Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 31403
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsfpw (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVR‘𝑇)
2 mvrsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
41, 2, 3mvrsval 31402 . 2 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
5 inss2 3834 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉
65a1i 11 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉)
7 fzofi 12773 . . . . 5 (0..^(#‘(2nd𝑋))) ∈ Fin
8 xp2nd 7199 . . . . . . . 8 (𝑋 ∈ ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
9 eqid 2622 . . . . . . . . 9 (mTC‘𝑇) = (mTC‘𝑇)
10 eqid 2622 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
119, 2, 10, 1mexval2 31400 . . . . . . . 8 𝐸 = ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉))
128, 11eleq2s 2719 . . . . . . 7 (𝑋𝐸 → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
13 wrdf 13310 . . . . . . 7 ((2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋):(0..^(#‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉))
14 ffn 6045 . . . . . . 7 ((2nd𝑋):(0..^(#‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋) Fn (0..^(#‘(2nd𝑋))))
1512, 13, 143syl 18 . . . . . 6 (𝑋𝐸 → (2nd𝑋) Fn (0..^(#‘(2nd𝑋))))
16 dffn4 6121 . . . . . 6 ((2nd𝑋) Fn (0..^(#‘(2nd𝑋))) ↔ (2nd𝑋):(0..^(#‘(2nd𝑋)))–onto→ran (2nd𝑋))
1715, 16sylib 208 . . . . 5 (𝑋𝐸 → (2nd𝑋):(0..^(#‘(2nd𝑋)))–onto→ran (2nd𝑋))
18 fofi 8252 . . . . 5 (((0..^(#‘(2nd𝑋))) ∈ Fin ∧ (2nd𝑋):(0..^(#‘(2nd𝑋)))–onto→ran (2nd𝑋)) → ran (2nd𝑋) ∈ Fin)
197, 17, 18sylancr 695 . . . 4 (𝑋𝐸 → ran (2nd𝑋) ∈ Fin)
20 inss1 3833 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)
21 ssfi 8180 . . . 4 ((ran (2nd𝑋) ∈ Fin ∧ (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)) → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 694 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
23 elfpw 8268 . . 3 ((ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉 ∧ (ran (2nd𝑋) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 698 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2701 1 (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158   × cxp 5112  ran crn 5115   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  2nd c2nd 7167  Fincfn 7955  0cc0 9936  ..^cfzo 12465  #chash 13117  Word cword 13291  mCNcmcn 31357  mVRcmvar 31358  mTCcmtc 31361  mExcmex 31364  mVarscmvrs 31366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-mrex 31383  df-mex 31384  df-mvrs 31386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator