Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovcl Structured version   Visualization version   GIF version

Theorem ndmaovcl 41283
Description: The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 6819 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
ndmaov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmaovcl.2 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
ndmaovcl.3 ((𝐴𝐹𝐵)) ∈ V
Assertion
Ref Expression
ndmaovcl ((𝐴𝐹𝐵)) ∈ 𝑆

Proof of Theorem ndmaovcl
StepHypRef Expression
1 ndmaovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
2 opelxp 5146 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ (𝐴𝑆𝐵𝑆))
3 ndmaov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
43eqcomi 2631 . . . . 5 (𝑆 × 𝑆) = dom 𝐹
54eleq2i 2693 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
6 ndmaovcl.3 . . . . 5 ((𝐴𝐹𝐵)) ∈ V
7 ndmaov 41263 . . . . 5 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) = V)
8 eleq1 2689 . . . . . . 7 ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V ↔ V ∈ V))
98biimpd 219 . . . . . 6 ( ((𝐴𝐹𝐵)) = V → ( ((𝐴𝐹𝐵)) ∈ V → V ∈ V))
10 vprc 4796 . . . . . . 7 ¬ V ∈ V
1110pm2.21i 116 . . . . . 6 (V ∈ V → ((𝐴𝐹𝐵)) ∈ 𝑆)
129, 11syl6com 37 . . . . 5 ( ((𝐴𝐹𝐵)) ∈ V → ( ((𝐴𝐹𝐵)) = V → ((𝐴𝐹𝐵)) ∈ 𝑆))
136, 7, 12mpsyl 68 . . . 4 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → ((𝐴𝐹𝐵)) ∈ 𝑆)
145, 13sylnbi 320 . . 3 (¬ ⟨𝐴, 𝐵⟩ ∈ (𝑆 × 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
152, 14sylnbir 321 . 2 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆)
161, 15pm2.61i 176 1 ((𝐴𝐹𝐵)) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   × cxp 5112  dom cdm 5114   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator