| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovcl | Structured version Visualization version Unicode version | ||
| Description: The "closure"
of an operation outside its domain, when the operation's
value is a set in contrast to ndmovcl 6819 where it is required that the
domain contains the empty set ( |
| Ref | Expression |
|---|---|
| ndmaov.1 |
|
| ndmaovcl.2 |
|
| ndmaovcl.3 |
|
| Ref | Expression |
|---|---|
| ndmaovcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmaovcl.2 |
. 2
| |
| 2 | opelxp 5146 |
. . 3
| |
| 3 | ndmaov.1 |
. . . . . 6
| |
| 4 | 3 | eqcomi 2631 |
. . . . 5
|
| 5 | 4 | eleq2i 2693 |
. . . 4
|
| 6 | ndmaovcl.3 |
. . . . 5
| |
| 7 | ndmaov 41263 |
. . . . 5
| |
| 8 | eleq1 2689 |
. . . . . . 7
| |
| 9 | 8 | biimpd 219 |
. . . . . 6
|
| 10 | vprc 4796 |
. . . . . . 7
| |
| 11 | 10 | pm2.21i 116 |
. . . . . 6
|
| 12 | 9, 11 | syl6com 37 |
. . . . 5
|
| 13 | 6, 7, 12 | mpsyl 68 |
. . . 4
|
| 14 | 5, 13 | sylnbi 320 |
. . 3
|
| 15 | 2, 14 | sylnbir 321 |
. 2
|
| 16 | 1, 15 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-fv 5896 df-dfat 41196 df-afv 41197 df-aov 41198 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |