MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Structured version   Visualization version   GIF version

Theorem vprc 4796
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc ¬ V ∈ V

Proof of Theorem vprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nalset 4795 . . 3 ¬ ∃𝑥𝑦 𝑦𝑥
2 vex 3203 . . . . . . 7 𝑦 ∈ V
32tbt 359 . . . . . 6 (𝑦𝑥 ↔ (𝑦𝑥𝑦 ∈ V))
43albii 1747 . . . . 5 (∀𝑦 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
5 dfcleq 2616 . . . . 5 (𝑥 = V ↔ ∀𝑦(𝑦𝑥𝑦 ∈ V))
64, 5bitr4i 267 . . . 4 (∀𝑦 𝑦𝑥𝑥 = V)
76exbii 1774 . . 3 (∃𝑥𝑦 𝑦𝑥 ↔ ∃𝑥 𝑥 = V)
81, 7mtbi 312 . 2 ¬ ∃𝑥 𝑥 = V
9 isset 3207 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
108, 9mtbir 313 1 ¬ V ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1481   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  nvel  4797  vnex  4798  intex  4820  intnex  4821  abnex  6965  snnexOLD  6967  iprc  7101  opabn1stprc  7228  elfi2  8320  fi0  8326  ruALT  8508  cardmin2  8824  00lsp  18981  fveqvfvv  41204  ndmaovcl  41283
  Copyright terms: Public domain W3C validator