MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii2 Structured version   Visualization version   GIF version

Theorem neii2 20912
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2622 . . 3 𝐽 = 𝐽
21neiss2 20905 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
31isnei 20907 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
4 simpr 477 . . . 4 ((𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
53, 4syl6bi 243 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
65impancom 456 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 𝐽 → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
72, 6mpd 15 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wrex 2913  wss 3574   cuni 4436  cfv 5888  Topctop 20698  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-nei 20902
This theorem is referenced by:  neiss  20913  ssnei  20914  ssnei2  20920  innei  20929  opnneiid  20930  neissex  20931  cnpnei  21068  hausnei2  21157  nlly2i  21279  neitx  21410  cnextcn  21871  utopreg  22056  neibastop2  32356
  Copyright terms: Public domain W3C validator