MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neitx Structured version   Visualization version   GIF version

Theorem neitx 21410
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypotheses
Ref Expression
neitx.x 𝑋 = 𝐽
neitx.y 𝑌 = 𝐾
Assertion
Ref Expression
neitx (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))

Proof of Theorem neitx
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neitx.x . . . . . 6 𝑋 = 𝐽
21neii1 20910 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐴𝑋)
32ad2ant2r 783 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐴𝑋)
4 neitx.y . . . . . 6 𝑌 = 𝐾
54neii1 20910 . . . . 5 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐵𝑌)
65ad2ant2l 782 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐵𝑌)
7 xpss12 5225 . . . 4 ((𝐴𝑋𝐵𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
83, 6, 7syl2anc 693 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌))
91, 4txuni 21395 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
109adantr 481 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
118, 10sseqtrd 3641 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾))
12 simp-5l 808 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
13 simp-4r 807 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐽)
14 simplr 792 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐾)
15 txopn 21405 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑎𝐽𝑏𝐾)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
1612, 13, 14, 15syl12anc 1324 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾))
17 simpr1l 1118 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝐶𝑎)
18173anassrs 1290 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐶𝑎)
19 simprl 794 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝐷𝑏)
20 xpss12 5225 . . . . . 6 ((𝐶𝑎𝐷𝑏) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
2118, 19, 20syl2anc 693 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏))
22 simpr1r 1119 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ ((𝐶𝑎𝑎𝐴) ∧ 𝑏𝐾 ∧ (𝐷𝑏𝑏𝐵))) → 𝑎𝐴)
23223anassrs 1290 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑎𝐴)
24 simprr 796 . . . . . 6 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → 𝑏𝐵)
25 xpss12 5225 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
2623, 24, 25syl2anc 693 . . . . 5 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))
27 sseq2 3627 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → ((𝐶 × 𝐷) ⊆ 𝑐 ↔ (𝐶 × 𝐷) ⊆ (𝑎 × 𝑏)))
28 sseq1 3626 . . . . . . 7 (𝑐 = (𝑎 × 𝑏) → (𝑐 ⊆ (𝐴 × 𝐵) ↔ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵)))
2927, 28anbi12d 747 . . . . . 6 (𝑐 = (𝑎 × 𝑏) → (((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)) ↔ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))))
3029rspcev 3309 . . . . 5 (((𝑎 × 𝑏) ∈ (𝐽 ×t 𝐾) ∧ ((𝐶 × 𝐷) ⊆ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐴 × 𝐵))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
3116, 21, 26, 30syl12anc 1324 . . . 4 (((((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) ∧ 𝑏𝐾) ∧ (𝐷𝑏𝑏𝐵)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
32 neii2 20912 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3332ad2ant2l 782 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3433ad2antrr 762 . . . 4 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑏𝐾 (𝐷𝑏𝑏𝐵))
3531, 34r19.29a 3078 . . 3 (((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) ∧ 𝑎𝐽) ∧ (𝐶𝑎𝑎𝐴)) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
36 neii2 20912 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3736ad2ant2r 783 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑎𝐽 (𝐶𝑎𝑎𝐴))
3835, 37r19.29a 3078 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))
39 txtop 21372 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4039adantr 481 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐽 ×t 𝐾) ∈ Top)
411neiss2 20905 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ ((nei‘𝐽)‘𝐶)) → 𝐶𝑋)
4241ad2ant2r 783 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐶𝑋)
434neiss2 20905 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷)) → 𝐷𝑌)
4443ad2ant2l 782 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → 𝐷𝑌)
45 xpss12 5225 . . . . 5 ((𝐶𝑋𝐷𝑌) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4642, 44, 45syl2anc 693 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝑋 × 𝑌))
4746, 10sseqtrd 3641 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾))
48 eqid 2622 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
4948isnei 20907 . . 3 (((𝐽 ×t 𝐾) ∈ Top ∧ (𝐶 × 𝐷) ⊆ (𝐽 ×t 𝐾)) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5040, 47, 49syl2anc 693 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → ((𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)) ↔ ((𝐴 × 𝐵) ⊆ (𝐽 ×t 𝐾) ∧ ∃𝑐 ∈ (𝐽 ×t 𝐾)((𝐶 × 𝐷) ⊆ 𝑐𝑐 ⊆ (𝐴 × 𝐵)))))
5111, 38, 50mpbir2and 957 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574   cuni 4436   × cxp 5112  cfv 5888  (class class class)co 6650  Topctop 20698  neicnei 20901   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-nei 20902  df-tx 21365
This theorem is referenced by:  utop2nei  22054  utop3cls  22055
  Copyright terms: Public domain W3C validator