MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfixp Structured version   Visualization version   GIF version

Theorem nfixp 7927
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfixp.1 𝑦𝐴
nfixp.2 𝑦𝐵
Assertion
Ref Expression
nfixp 𝑦X𝑥𝐴 𝐵

Proof of Theorem nfixp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 7909 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
2 nfcv 2764 . . . . 5 𝑦𝑧
3 nftru 1730 . . . . . . 7 𝑥
4 nfcvf 2788 . . . . . . . . 9 (¬ ∀𝑦 𝑦 = 𝑥𝑦𝑥)
54adantl 482 . . . . . . . 8 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝑥)
6 nfixp.1 . . . . . . . . 9 𝑦𝐴
76a1i 11 . . . . . . . 8 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝐴)
85, 7nfeld 2773 . . . . . . 7 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦 𝑥𝐴)
93, 8nfabd2 2784 . . . . . 6 (⊤ → 𝑦{𝑥𝑥𝐴})
109trud 1493 . . . . 5 𝑦{𝑥𝑥𝐴}
112, 10nffn 5987 . . . 4 𝑦 𝑧 Fn {𝑥𝑥𝐴}
12 df-ral 2917 . . . . 5 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
132a1i 11 . . . . . . . . . 10 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝑧)
1413, 5nffvd 6200 . . . . . . . . 9 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦(𝑧𝑥))
15 nfixp.2 . . . . . . . . . 10 𝑦𝐵
1615a1i 11 . . . . . . . . 9 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → 𝑦𝐵)
1714, 16nfeld 2773 . . . . . . . 8 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧𝑥) ∈ 𝐵)
188, 17nfimd 1823 . . . . . . 7 ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
193, 18nfald2 2331 . . . . . 6 (⊤ → Ⅎ𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵))
2019trud 1493 . . . . 5 𝑦𝑥(𝑥𝐴 → (𝑧𝑥) ∈ 𝐵)
2112, 20nfxfr 1779 . . . 4 𝑦𝑥𝐴 (𝑧𝑥) ∈ 𝐵
2211, 21nfan 1828 . . 3 𝑦(𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)
2322nfab 2769 . 2 𝑦{𝑧 ∣ (𝑧 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
241, 23nfcxfr 2762 1 𝑦X𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481  wtru 1484  wnf 1708  wcel 1990  {cab 2608  wnfc 2751  wral 2912   Fn wfn 5883  cfv 5888  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ixp 7909
This theorem is referenced by:  vonioo  40896
  Copyright terms: Public domain W3C validator