![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfixp | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfixp.1 | ⊢ Ⅎ𝑦𝐴 |
nfixp.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfixp | ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 7909 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
2 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑦𝑧 | |
3 | nftru 1730 | . . . . . . 7 ⊢ Ⅎ𝑥⊤ | |
4 | nfcvf 2788 | . . . . . . . . 9 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) | |
5 | 4 | adantl 482 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝑥) |
6 | nfixp.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
7 | 6 | a1i 11 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝐴) |
8 | 5, 7 | nfeld 2773 | . . . . . . 7 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦 𝑥 ∈ 𝐴) |
9 | 3, 8 | nfabd2 2784 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴}) |
10 | 9 | trud 1493 | . . . . 5 ⊢ Ⅎ𝑦{𝑥 ∣ 𝑥 ∈ 𝐴} |
11 | 2, 10 | nffn 5987 | . . . 4 ⊢ Ⅎ𝑦 𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
12 | df-ral 2917 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) | |
13 | 2 | a1i 11 | . . . . . . . . . 10 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝑧) |
14 | 13, 5 | nffvd 6200 | . . . . . . . . 9 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧‘𝑥)) |
15 | nfixp.2 | . . . . . . . . . 10 ⊢ Ⅎ𝑦𝐵 | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦𝐵) |
17 | 14, 16 | nfeld 2773 | . . . . . . . 8 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑧‘𝑥) ∈ 𝐵) |
18 | 8, 17 | nfimd 1823 | . . . . . . 7 ⊢ ((⊤ ∧ ¬ ∀𝑦 𝑦 = 𝑥) → Ⅎ𝑦(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
19 | 3, 18 | nfald2 2331 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵)) |
20 | 19 | trud 1493 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(𝑥 ∈ 𝐴 → (𝑧‘𝑥) ∈ 𝐵) |
21 | 12, 20 | nfxfr 1779 | . . . 4 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 |
22 | 11, 21 | nfan 1828 | . . 3 ⊢ Ⅎ𝑦(𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) |
23 | 22 | nfab 2769 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ (𝑧 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} |
24 | 1, 23 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑦X𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∀wal 1481 ⊤wtru 1484 Ⅎwnf 1708 ∈ wcel 1990 {cab 2608 Ⅎwnfc 2751 ∀wral 2912 Fn wfn 5883 ‘cfv 5888 Xcixp 7908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-ixp 7909 |
This theorem is referenced by: vonioo 40896 |
Copyright terms: Public domain | W3C validator |