| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt2.1 | ⊢ Ⅎ𝑧𝐴 |
| nfmpt2.2 | ⊢ Ⅎ𝑧𝐵 |
| nfmpt2.3 | ⊢ Ⅎ𝑧𝐶 |
| Ref | Expression |
|---|---|
| nfmpt2 | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt2 6655 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
| 2 | nfmpt2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 3 | 2 | nfcri 2758 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
| 4 | nfmpt2.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
| 5 | 4 | nfcri 2758 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1828 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | nfmpt2.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 8 | 7 | nfeq2 2780 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
| 9 | 6, 8 | nfan 1828 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
| 10 | 9 | nfoprab 6707 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
| 11 | 1, 10 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 {coprab 6651 ↦ cmpt2 6652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: el2mpt2csbcl 7250 nfseq 12811 ptbasfi 21384 numclwlk1lem2 27230 sdclem1 33539 fmuldfeqlem1 39814 stoweidlem51 40268 vonicc 40899 |
| Copyright terms: Public domain | W3C validator |