MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpt2 Structured version   Visualization version   GIF version

Theorem nfmpt2 6724
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt2.1 𝑧𝐴
nfmpt2.2 𝑧𝐵
nfmpt2.3 𝑧𝐶
Assertion
Ref Expression
nfmpt2 𝑧(𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem nfmpt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 6655 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 nfmpt2.1 . . . . . 6 𝑧𝐴
32nfcri 2758 . . . . 5 𝑧 𝑥𝐴
4 nfmpt2.2 . . . . . 6 𝑧𝐵
54nfcri 2758 . . . . 5 𝑧 𝑦𝐵
63, 5nfan 1828 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
7 nfmpt2.3 . . . . 5 𝑧𝐶
87nfeq2 2780 . . . 4 𝑧 𝑤 = 𝐶
96, 8nfan 1828 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)
109nfoprab 6707 . 2 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
111, 10nfcxfr 2762 1 𝑧(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  wnfc 2751  {coprab 6651  cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  el2mpt2csbcl  7250  nfseq  12811  ptbasfi  21384  numclwlk1lem2  27230  sdclem1  33539  fmuldfeqlem1  39814  stoweidlem51  40268  vonicc  40899
  Copyright terms: Public domain W3C validator