Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepnelem Structured version   Visualization version   GIF version

Theorem nosepnelem 31830
Description: Lemma for nosepne 31831. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepnelem ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepnelem
StepHypRef Expression
1 sltval2 31809 . . 3 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 ↔ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
2 fvex 6201 . . . . 5 (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ∈ V
3 fvex 6201 . . . . 5 (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ∈ V
42, 3brtp 31639 . . . 4 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜)))
5 1n0 7575 . . . . . 6 1𝑜 ≠ ∅
6 simpl 473 . . . . . . 7 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜)
7 simpr 477 . . . . . . 7 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
86, 7neeq12d 2855 . . . . . 6 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ 1𝑜 ≠ ∅))
95, 8mpbiri 248 . . . . 5 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
10 df-2o 7561 . . . . . . . . . . 11 2𝑜 = suc 1𝑜
11 df-1o 7560 . . . . . . . . . . 11 1𝑜 = suc ∅
1210, 11eqeq12i 2636 . . . . . . . . . 10 (2𝑜 = 1𝑜 ↔ suc 1𝑜 = suc ∅)
13 1on 7567 . . . . . . . . . . 11 1𝑜 ∈ On
14 0elon 5778 . . . . . . . . . . 11 ∅ ∈ On
15 suc11 5831 . . . . . . . . . . 11 ((1𝑜 ∈ On ∧ ∅ ∈ On) → (suc 1𝑜 = suc ∅ ↔ 1𝑜 = ∅))
1613, 14, 15mp2an 708 . . . . . . . . . 10 (suc 1𝑜 = suc ∅ ↔ 1𝑜 = ∅)
1712, 16bitri 264 . . . . . . . . 9 (2𝑜 = 1𝑜 ↔ 1𝑜 = ∅)
1817necon3bii 2846 . . . . . . . 8 (2𝑜 ≠ 1𝑜 ↔ 1𝑜 ≠ ∅)
195, 18mpbir 221 . . . . . . 7 2𝑜 ≠ 1𝑜
2019necomi 2848 . . . . . 6 1𝑜 ≠ 2𝑜
21 simpl 473 . . . . . . 7 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜)
22 simpr 477 . . . . . . 7 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜)
2321, 22neeq12d 2855 . . . . . 6 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ 1𝑜 ≠ 2𝑜))
2420, 23mpbiri 248 . . . . 5 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
25 2on 7568 . . . . . . . . 9 2𝑜 ∈ On
2625elexi 3213 . . . . . . . 8 2𝑜 ∈ V
2726prid2 4298 . . . . . . 7 2𝑜 ∈ {1𝑜, 2𝑜}
2827nosgnn0i 31812 . . . . . 6 ∅ ≠ 2𝑜
29 simpl 473 . . . . . . 7 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
30 simpr 477 . . . . . . 7 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜)
3129, 30neeq12d 2855 . . . . . 6 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ↔ ∅ ≠ 2𝑜))
3228, 31mpbiri 248 . . . . 5 (((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
339, 24, 323jaoi 1391 . . . 4 ((((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 1𝑜 ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜) ∨ ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅ ∧ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = 2𝑜)) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
344, 33sylbi 207 . . 3 ((𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}){⟨1𝑜, ∅⟩, ⟨1𝑜, 2𝑜⟩, ⟨∅, 2𝑜⟩} (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
351, 34syl6bi 243 . 2 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})))
36353impia 1261 1 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  c0 3915  {ctp 4181  cop 4183   cint 4475   class class class wbr 4653  Oncon0 5723  suc csuc 5725  cfv 5888  1𝑜c1o 7553  2𝑜c2o 7554   No csur 31793   <s cslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fv 5896  df-1o 7560  df-2o 7561  df-slt 31797
This theorem is referenced by:  nosepne  31831
  Copyright terms: Public domain W3C validator