Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepnelem Structured version   Visualization version   Unicode version

Theorem nosepnelem 31830
Description: Lemma for nosepne 31831. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepnelem  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nosepnelem
StepHypRef Expression
1 sltval2 31809 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } ) ) )
2 fvex 6201 . . . . 5  |-  ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  e. 
_V
3 fvex 6201 . . . . 5  |-  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  e. 
_V
42, 3brtp 31639 . . . 4  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  <->  ( (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) ) )
5 1n0 7575 . . . . . 6  |-  1o  =/=  (/)
6 simpl 473 . . . . . . 7  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  ->  ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )
7 simpr 477 . . . . . . 7  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  ->  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )
86, 7neeq12d 2855 . . . . . 6  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  ->  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  <->  1o  =/=  (/) ) )
95, 8mpbiri 248 . . . . 5  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )  ->  ( A `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
10 df-2o 7561 . . . . . . . . . . 11  |-  2o  =  suc  1o
11 df-1o 7560 . . . . . . . . . . 11  |-  1o  =  suc  (/)
1210, 11eqeq12i 2636 . . . . . . . . . 10  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
13 1on 7567 . . . . . . . . . . 11  |-  1o  e.  On
14 0elon 5778 . . . . . . . . . . 11  |-  (/)  e.  On
15 suc11 5831 . . . . . . . . . . 11  |-  ( ( 1o  e.  On  /\  (/) 
e.  On )  -> 
( suc  1o  =  suc  (/)  <->  1o  =  (/) ) )
1613, 14, 15mp2an 708 . . . . . . . . . 10  |-  ( suc 
1o  =  suc  (/)  <->  1o  =  (/) )
1712, 16bitri 264 . . . . . . . . 9  |-  ( 2o  =  1o  <->  1o  =  (/) )
1817necon3bii 2846 . . . . . . . 8  |-  ( 2o  =/=  1o  <->  1o  =/=  (/) )
195, 18mpbir 221 . . . . . . 7  |-  2o  =/=  1o
2019necomi 2848 . . . . . 6  |-  1o  =/=  2o
21 simpl 473 . . . . . . 7  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o )
22 simpr 477 . . . . . . 7  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )
2321, 22neeq12d 2855 . . . . . 6  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  <->  1o  =/=  2o ) )
2420, 23mpbiri 248 . . . . 5  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  1o  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
25 2on 7568 . . . . . . . . 9  |-  2o  e.  On
2625elexi 3213 . . . . . . . 8  |-  2o  e.  _V
2726prid2 4298 . . . . . . 7  |-  2o  e.  { 1o ,  2o }
2827nosgnn0i 31812 . . . . . 6  |-  (/)  =/=  2o
29 simpl 473 . . . . . . 7  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  (/) )
30 simpr 477 . . . . . . 7  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )
3129, 30neeq12d 2855 . . . . . 6  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  <->  (/)  =/=  2o ) )
3228, 31mpbiri 248 . . . . 5  |-  ( ( ( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) )
339, 24, 323jaoi 1391 . . . 4  |-  ( ( ( ( A `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  1o 
/\  ( B `  |^| { x  e.  On  |  ( A `  x )  =/=  ( B `  x ) } )  =  (/) )  \/  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  1o  /\  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o )  \/  (
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =  (/)  /\  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =  2o ) )  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
344, 33sylbi 207 . . 3  |-  ( ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
351, 34syl6bi 243 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  ( A `  |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } )  =/=  ( B `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } ) ) )
36353impia 1261 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  A <s B )  -> 
( A `  |^| { x  e.  On  | 
( A `  x
)  =/=  ( B `
 x ) } )  =/=  ( B `
 |^| { x  e.  On  |  ( A `
 x )  =/=  ( B `  x
) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   (/)c0 3915   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   Oncon0 5723   suc csuc 5725   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fv 5896  df-1o 7560  df-2o 7561  df-slt 31797
This theorem is referenced by:  nosepne  31831
  Copyright terms: Public domain W3C validator