MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep2 Structured version   Visualization version   GIF version

Theorem nrmsep2 21160
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐽

Proof of Theorem nrmsep2
StepHypRef Expression
1 simpl 473 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐽 ∈ Nrm)
2 simpr2 1068 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐷 ∈ (Clsd‘𝐽))
3 eqid 2622 . . . . 5 𝐽 = 𝐽
43cldopn 20835 . . . 4 (𝐷 ∈ (Clsd‘𝐽) → ( 𝐽𝐷) ∈ 𝐽)
52, 4syl 17 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ( 𝐽𝐷) ∈ 𝐽)
6 simpr1 1067 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐶 ∈ (Clsd‘𝐽))
7 simpr3 1069 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → (𝐶𝐷) = ∅)
83cldss 20833 . . . . 5 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
9 reldisj 4020 . . . . 5 (𝐶 𝐽 → ((𝐶𝐷) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷)))
106, 8, 93syl 18 . . . 4 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ((𝐶𝐷) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷)))
117, 10mpbid 222 . . 3 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → 𝐶 ⊆ ( 𝐽𝐷))
12 nrmsep3 21159 . . 3 ((𝐽 ∈ Nrm ∧ (( 𝐽𝐷) ∈ 𝐽𝐶 ∈ (Clsd‘𝐽) ∧ 𝐶 ⊆ ( 𝐽𝐷))) → ∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)))
131, 5, 6, 11, 12syl13anc 1328 . 2 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)))
14 ssdifin0 4050 . . . 4 (((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷) → (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅)
1514anim2i 593 . . 3 ((𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)) → (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
1615reximi 3011 . 2 (∃𝑥𝐽 (𝐶𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ ( 𝐽𝐷)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
1713, 16syl 17 1 ((𝐽 ∈ Nrm ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐷 ∈ (Clsd‘𝐽) ∧ (𝐶𝐷) = ∅)) → ∃𝑥𝐽 (𝐶𝑥 ∧ (((cls‘𝐽)‘𝑥) ∩ 𝐷) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  cin 3573  wss 3574  c0 3915   cuni 4436  cfv 5888  Clsdccld 20820  clsccl 20822  Nrmcnrm 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-top 20699  df-cld 20823  df-nrm 21121
This theorem is referenced by:  nrmsep  21161  isnrm2  21162
  Copyright terms: Public domain W3C validator