![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximi | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | reximia 3009 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∃wrex 2913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 df-rex 2918 |
This theorem is referenced by: 2r19.29 3079 r19.29d2r 3080 r19.40 3088 reu3 3396 2reu5 3416 ssiun 4562 iinss 4571 elsnxp 5677 elsnxpOLD 5678 elunirn 6509 iiner 7819 erovlem 7843 xpf1o 8122 unbnn2 8217 scott0 8749 dfac2 8953 cflm 9072 alephsing 9098 numthcor 9316 zorng 9326 zornn0g 9327 ttukeyg 9339 uniimadom 9366 axgroth3 9653 qextlt 12034 qextle 12035 mptnn0fsuppd 12798 hash2sspr 13270 cshword 13537 rexanre 14086 climi2 14242 climi0 14243 rlimres 14289 lo1res 14290 caurcvgr 14404 caurcvg2 14408 caucvgb 14410 prodmolem2 14665 prodmo 14666 vdwnnlem1 15699 cshwsiun 15806 isnmnd 17298 efgrelexlemb 18163 nn0gsumfz0 18381 pmatcollpw2lem 20582 eltg2b 20763 neiptopuni 20934 neiptopnei 20936 ordtbas2 20995 lmcvg 21066 cnprest 21093 lmcnp 21108 nrmsep2 21160 bwth 21213 1stcfb 21248 islly2 21287 llycmpkgen 21355 txbas 21370 tx1stc 21453 cnextcn 21871 tmdcn2 21893 utoptop 22038 ucnima 22085 cfiluweak 22099 metrest 22329 metust 22363 cfilucfil 22364 metustbl 22371 xrhmeo 22745 cmetcaulem 23086 iundisj 23316 limcresi 23649 elply2 23952 aalioulem2 24088 ulmf 24136 lgamucov2 24765 2sqlem7 25149 pntrsumbnd 25255 istrkg2ld 25359 tgisline 25522 umgr2edgneu 26106 umgr3v3e3cycl 27044 eucrctshift 27103 1to3vfriendship 27145 2pthfrgrrn 27146 grpoidval 27367 grporcan 27372 grpoinveu 27373 iundisjf 29402 xlt2addrd 29523 xrofsup 29533 iundisjfi 29555 rhmdvdsr 29818 tpr2rico 29958 esumc 30113 esumfsup 30132 esumpcvgval 30140 hasheuni 30147 esumiun 30156 voliune 30292 volfiniune 30293 dya2icoseg2 30340 dya2iocnei 30344 dya2iocuni 30345 omssubaddlem 30361 omssubadd 30362 afsval 30749 bnj31 30785 bnj1239 30876 bnj900 30999 bnj906 31000 bnj1398 31102 bnj1498 31129 nosupno 31849 nosupfv 31852 colinearex 32167 segcon2 32212 opnrebl2 32316 sdclem2 33538 heibor1lem 33608 grpomndo 33674 prtlem9 34149 prtlem11 34151 prter1 34164 prter2 34166 hl2at 34691 cvrval4N 34700 athgt 34742 1dimN 34757 lhpexnle 35292 lhpexle1 35294 cdlemftr2 35854 cdlemftr1 35855 cdlemftr0 35856 cdlemg5 35893 cdlemg33c0 35990 mapdrvallem2 36934 eldiophb 37320 rmxyelqirr 37475 hbtlem1 37693 hbtlem7 37695 ss2iundf 37951 iinssf 39327 founiiun 39360 founiiun0 39377 climuzlem 39975 stirlinglem13 40303 fourierdlem112 40435 reuan 41180 2reu2rex 41183 cshword2 41437 gbogbow 41644 sbgoldbo 41675 |
Copyright terms: Public domain | W3C validator |