MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmpteq Structured version   Visualization version   GIF version

Theorem ofmpteq 6916
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘𝑓 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem ofmpteq
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → 𝐴𝑉)
2 simpr 477 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
3 simpl2 1065 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐵) Fn 𝐴)
4 eqid 2622 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 6019 . . . . 5 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
63, 5sylibr 224 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ∈ V)
7 nfcsb1v 3549 . . . . . 6 𝑥𝑎 / 𝑥𝐵
87nfel1 2779 . . . . 5 𝑥𝑎 / 𝑥𝐵 ∈ V
9 csbeq1a 3542 . . . . . 6 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
109eleq1d 2686 . . . . 5 (𝑥 = 𝑎 → (𝐵 ∈ V ↔ 𝑎 / 𝑥𝐵 ∈ V))
118, 10rspc 3303 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ∈ V → 𝑎 / 𝑥𝐵 ∈ V))
122, 6, 11sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ∈ V)
13 simpl3 1066 . . . . 5 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → (𝑥𝐴𝐶) Fn 𝐴)
14 eqid 2622 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1514mptfng 6019 . . . . 5 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
1613, 15sylibr 224 . . . 4 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐶 ∈ V)
17 nfcsb1v 3549 . . . . . 6 𝑥𝑎 / 𝑥𝐶
1817nfel1 2779 . . . . 5 𝑥𝑎 / 𝑥𝐶 ∈ V
19 csbeq1a 3542 . . . . . 6 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
2019eleq1d 2686 . . . . 5 (𝑥 = 𝑎 → (𝐶 ∈ V ↔ 𝑎 / 𝑥𝐶 ∈ V))
2118, 20rspc 3303 . . . 4 (𝑎𝐴 → (∀𝑥𝐴 𝐶 ∈ V → 𝑎 / 𝑥𝐶 ∈ V))
222, 16, 21sylc 65 . . 3 (((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐶 ∈ V)
23 nfcv 2764 . . . . 5 𝑎𝐵
2423, 7, 9cbvmpt 4749 . . . 4 (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵)
2524a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐵) = (𝑎𝐴𝑎 / 𝑥𝐵))
26 nfcv 2764 . . . . 5 𝑎𝐶
2726, 17, 19cbvmpt 4749 . . . 4 (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶)
2827a1i 11 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → (𝑥𝐴𝐶) = (𝑎𝐴𝑎 / 𝑥𝐶))
291, 12, 22, 25, 28offval2 6914 . 2 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘𝑓 𝑅(𝑥𝐴𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)))
30 nfcv 2764 . . 3 𝑎(𝐵𝑅𝐶)
31 nfcv 2764 . . . 4 𝑥𝑅
327, 31, 17nfov 6676 . . 3 𝑥(𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶)
339, 19oveq12d 6668 . . 3 (𝑥 = 𝑎 → (𝐵𝑅𝐶) = (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3430, 32, 33cbvmpt 4749 . 2 (𝑥𝐴 ↦ (𝐵𝑅𝐶)) = (𝑎𝐴 ↦ (𝑎 / 𝑥𝐵𝑅𝑎 / 𝑥𝐶))
3529, 34syl6eqr 2674 1 ((𝐴𝑉 ∧ (𝑥𝐴𝐵) Fn 𝐴 ∧ (𝑥𝐴𝐶) Fn 𝐴) → ((𝑥𝐴𝐵) ∘𝑓 𝑅(𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  csb 3533  cmpt 4729   Fn wfn 5883  (class class class)co 6650  𝑓 cof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  mdetrlin  20408  mzpaddmpt  37304  mzpmulmpt  37305  mzpcompact2lem  37314
  Copyright terms: Public domain W3C validator