MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrval Structured version   Visualization version   GIF version

Theorem ofrval 6907
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
ofval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
ofval.7 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
Assertion
Ref Expression
ofrval ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)

Proof of Theorem ofrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . . 6 (𝜑𝐹 Fn 𝐴)
2 offval.2 . . . . . 6 (𝜑𝐺 Fn 𝐵)
3 offval.3 . . . . . 6 (𝜑𝐴𝑉)
4 offval.4 . . . . . 6 (𝜑𝐵𝑊)
5 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
6 eqidd 2623 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
7 eqidd 2623 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = (𝐺𝑥))
81, 2, 3, 4, 5, 6, 7ofrfval 6905 . . . . 5 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥)))
98biimpa 501 . . . 4 ((𝜑𝐹𝑟 𝑅𝐺) → ∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥))
10 fveq2 6191 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
11 fveq2 6191 . . . . . 6 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1210, 11breq12d 4666 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)𝑅(𝐺𝑥) ↔ (𝐹𝑋)𝑅(𝐺𝑋)))
1312rspccv 3306 . . . 4 (∀𝑥𝑆 (𝐹𝑥)𝑅(𝐺𝑥) → (𝑋𝑆 → (𝐹𝑋)𝑅(𝐺𝑋)))
149, 13syl 17 . . 3 ((𝜑𝐹𝑟 𝑅𝐺) → (𝑋𝑆 → (𝐹𝑋)𝑅(𝐺𝑋)))
15143impia 1261 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐹𝑋)𝑅(𝐺𝑋))
16 simp1 1061 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝜑)
17 inss1 3833 . . . . 5 (𝐴𝐵) ⊆ 𝐴
185, 17eqsstr3i 3636 . . . 4 𝑆𝐴
19 simp3 1063 . . . 4 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝑆)
2018, 19sseldi 3601 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝐴)
21 ofval.6 . . 3 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐶)
2216, 20, 21syl2anc 693 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐹𝑋) = 𝐶)
23 inss2 3834 . . . . 5 (𝐴𝐵) ⊆ 𝐵
245, 23eqsstr3i 3636 . . . 4 𝑆𝐵
2524, 19sseldi 3601 . . 3 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝑋𝐵)
26 ofval.7 . . 3 ((𝜑𝑋𝐵) → (𝐺𝑋) = 𝐷)
2716, 25, 26syl2anc 693 . 2 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → (𝐺𝑋) = 𝐷)
2815, 22, 273brtr3d 4684 1 ((𝜑𝐹𝑟 𝑅𝐺𝑋𝑆) → 𝐶𝑅𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cin 3573   class class class wbr 4653   Fn wfn 5883  cfv 5888  𝑟 cofr 6896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ofr 6898
This theorem is referenced by:  itg1le  23480  gsumle  29779  ftc1anclem5  33489
  Copyright terms: Public domain W3C validator