| Step | Hyp | Ref
| Expression |
| 1 | | gsumle.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | ssid 3624 |
. . . 4
⊢ 𝐴 ⊆ 𝐴 |
| 3 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | 3 | anbi2d 740 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴))) |
| 5 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝐹 ↾ 𝑎) = (𝐹 ↾ ∅)) |
| 6 | 5 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑀 Σg
(𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾
∅))) |
| 7 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝐺 ↾ 𝑎) = (𝐺 ↾ ∅)) |
| 8 | 7 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑀 Σg
(𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾
∅))) |
| 9 | 6, 8 | breq12d 4666 |
. . . . . . 7
⊢ (𝑎 = ∅ → ((𝑀 Σg
(𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅)))) |
| 10 | 4, 9 | imbi12d 334 |
. . . . . 6
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅))))) |
| 11 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑎 ⊆ 𝐴 ↔ 𝑒 ⊆ 𝐴)) |
| 12 | 11 | anbi2d 740 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝑒 ⊆ 𝐴))) |
| 13 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝐹 ↾ 𝑎) = (𝐹 ↾ 𝑒)) |
| 14 | 13 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑀 Σg (𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾ 𝑒))) |
| 15 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = 𝑒 → (𝐺 ↾ 𝑎) = (𝐺 ↾ 𝑒)) |
| 16 | 15 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = 𝑒 → (𝑀 Σg (𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾ 𝑒))) |
| 17 | 14, 16 | breq12d 4666 |
. . . . . . 7
⊢ (𝑎 = 𝑒 → ((𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒)))) |
| 18 | 12, 17 | imbi12d 334 |
. . . . . 6
⊢ (𝑎 = 𝑒 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))))) |
| 19 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝑎 ⊆ 𝐴 ↔ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) |
| 20 | 19 | anbi2d 740 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴))) |
| 21 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝐹 ↾ 𝑎) = (𝐹 ↾ (𝑒 ∪ {𝑦}))) |
| 22 | 21 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦})))) |
| 23 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝐺 ↾ 𝑎) = (𝐺 ↾ (𝑒 ∪ {𝑦}))) |
| 24 | 23 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (𝑀 Σg (𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))) |
| 25 | 22, 24 | breq12d 4666 |
. . . . . . 7
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → ((𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))))) |
| 26 | 20, 25 | imbi12d 334 |
. . . . . 6
⊢ (𝑎 = (𝑒 ∪ {𝑦}) → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 27 | | sseq1 3626 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 28 | 27 | anbi2d 740 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎 ⊆ 𝐴) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐴))) |
| 29 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝐹 ↾ 𝑎) = (𝐹 ↾ 𝐴)) |
| 30 | 29 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑀 Σg (𝐹 ↾ 𝑎)) = (𝑀 Σg (𝐹 ↾ 𝐴))) |
| 31 | | reseq2 5391 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝐺 ↾ 𝑎) = (𝐺 ↾ 𝐴)) |
| 32 | 31 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑀 Σg (𝐺 ↾ 𝑎)) = (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 33 | 30, 32 | breq12d 4666 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎)) ↔ (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴)))) |
| 34 | 28, 33 | imbi12d 334 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑎)) ≤ (𝑀 Σg (𝐺 ↾ 𝑎))) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))))) |
| 35 | | gsumle.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ oMnd) |
| 36 | | omndtos 29705 |
. . . . . . . . . 10
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| 37 | | tospos 29658 |
. . . . . . . . . 10
⊢ (𝑀 ∈ Toset → 𝑀 ∈ Poset) |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Poset) |
| 39 | | res0 5400 |
. . . . . . . . . . . 12
⊢ (𝐹 ↾ ∅) =
∅ |
| 40 | 39 | oveq2i 6661 |
. . . . . . . . . . 11
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(𝑀
Σg ∅) |
| 41 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 42 | 41 | gsum0 17278 |
. . . . . . . . . . 11
⊢ (𝑀 Σg
∅) = (0g‘𝑀) |
| 43 | 40, 42 | eqtri 2644 |
. . . . . . . . . 10
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(0g‘𝑀) |
| 44 | | omndmnd 29704 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Mnd) |
| 45 | | gsumle.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑀) |
| 46 | 45, 41 | mndidcl 17308 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
| 47 | 35, 44, 46 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑀) ∈ 𝐵) |
| 48 | 43, 47 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ∈ 𝐵) |
| 49 | | gsumle.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝑀) |
| 50 | 45, 49 | posref 16951 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Poset ∧ (𝑀 Σg
(𝐹 ↾ ∅)) ∈
𝐵) → (𝑀 Σg
(𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐹 ↾
∅))) |
| 51 | 38, 48, 50 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐹 ↾
∅))) |
| 52 | | res0 5400 |
. . . . . . . . . 10
⊢ (𝐺 ↾ ∅) =
∅ |
| 53 | 39, 52 | eqtr4i 2647 |
. . . . . . . . 9
⊢ (𝐹 ↾ ∅) = (𝐺 ↾
∅) |
| 54 | 53 | oveq2i 6661 |
. . . . . . . 8
⊢ (𝑀 Σg
(𝐹 ↾ ∅)) =
(𝑀
Σg (𝐺 ↾ ∅)) |
| 55 | 51, 54 | syl6breq 4694 |
. . . . . . 7
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅))) |
| 56 | 55 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ∅ ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ ∅)) ≤ (𝑀 Σg
(𝐺 ↾
∅))) |
| 57 | | ssun1 3776 |
. . . . . . . . . 10
⊢ 𝑒 ⊆ (𝑒 ∪ {𝑦}) |
| 58 | | sstr2 3610 |
. . . . . . . . . 10
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝑒 ∪ {𝑦}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴)) |
| 59 | 57, 58 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑒 ∪ {𝑦}) ⊆ 𝐴 → 𝑒 ⊆ 𝐴) |
| 60 | 59 | anim2i 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝜑 ∧ 𝑒 ⊆ 𝐴)) |
| 61 | 60 | imim1i 63 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒)))) |
| 62 | | simplr 792 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) |
| 63 | | simpllr 799 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ¬ 𝑦 ∈ 𝑒) |
| 64 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) |
| 65 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 66 | 35 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑀 ∈ oMnd) |
| 67 | | gsumle.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| 68 | 67 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐺:𝐴⟶𝐵) |
| 69 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴) |
| 70 | | ssun2 3777 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦} ⊆ (𝑒 ∪ {𝑦}) |
| 71 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 72 | 71 | snss 4316 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝑒 ∪ {𝑦}) ↔ {𝑦} ⊆ (𝑒 ∪ {𝑦})) |
| 73 | 70, 72 | mpbir 221 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ (𝑒 ∪ {𝑦}) |
| 74 | 73 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑦 ∈ (𝑒 ∪ {𝑦})) |
| 75 | 69, 74 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑦 ∈ 𝐴) |
| 76 | 68, 75 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺‘𝑦) ∈ 𝐵) |
| 77 | 76 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝐺‘𝑦) ∈ 𝐵) |
| 78 | | gsumle.n |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 79 | 78 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑀 ∈ CMnd) |
| 80 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑒 ∈ V |
| 81 | 80 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑒 ∈ V) |
| 82 | | gsumle.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 83 | 82 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐹:𝐴⟶𝐵) |
| 84 | 57, 69 | syl5ss 3614 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑒 ⊆ 𝐴) |
| 85 | 83, 84 | fssresd 6071 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ 𝑒):𝑒⟶𝐵) |
| 86 | 1 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐴 ∈ Fin) |
| 87 | | fvexd 6203 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (0g‘𝑀) ∈ V) |
| 88 | 83, 86, 87 | fdmfifsupp 8285 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐹 finSupp (0g‘𝑀)) |
| 89 | 88, 87 | fsuppres 8300 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ 𝑒) finSupp (0g‘𝑀)) |
| 90 | 45, 41, 79, 81, 85, 89 | gsumcl 18316 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐹 ↾ 𝑒)) ∈ 𝐵) |
| 91 | 90 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ 𝑒)) ∈ 𝐵) |
| 92 | 83, 75 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹‘𝑦) ∈ 𝐵) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝐹‘𝑦) ∈ 𝐵) |
| 94 | 68, 84 | fssresd 6071 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺 ↾ 𝑒):𝑒⟶𝐵) |
| 95 | | ssfi 8180 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ Fin ∧ 𝑒 ⊆ 𝐴) → 𝑒 ∈ Fin) |
| 96 | 86, 84, 95 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑒 ∈ Fin) |
| 97 | 94, 96, 87 | fdmfifsupp 8285 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺 ↾ 𝑒) finSupp (0g‘𝑀)) |
| 98 | 45, 41, 79, 81, 94, 97 | gsumcl 18316 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ 𝑒)) ∈ 𝐵) |
| 99 | 98 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐺 ↾ 𝑒)) ∈ 𝐵) |
| 100 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) |
| 101 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝜑) |
| 102 | | gsumle.c |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∘𝑟 ≤ 𝐺) |
| 103 | 102 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝐹 ∘𝑟 ≤ 𝐺) |
| 104 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 105 | 82, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 106 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:𝐴⟶𝐵 → 𝐺 Fn 𝐴) |
| 107 | 67, 106 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 108 | | inidm 3822 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 109 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
| 110 | | eqidd 2623 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = (𝐺‘𝑦)) |
| 111 | 105, 107,
1, 1, 108, 109, 110 | ofrval 6907 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐹 ∘𝑟 ≤ 𝐺 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ≤ (𝐺‘𝑦)) |
| 112 | 101, 103,
75, 111 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹‘𝑦) ≤ (𝐺‘𝑦)) |
| 113 | 112 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝐹‘𝑦) ≤ (𝐺‘𝑦)) |
| 114 | 79 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑀 ∈ CMnd) |
| 115 | 45, 49, 65, 66, 77, 91, 93, 99, 100, 113, 114 | omndadd2d 29708 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) ≤ ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 116 | 96 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑒 ∈ Fin) |
| 117 | 82 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → 𝐹:𝐴⟶𝐵) |
| 118 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → (𝑒 ∪ {𝑦}) ⊆ 𝐴) |
| 119 | | elun1 3780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑒 → 𝑧 ∈ (𝑒 ∪ {𝑦})) |
| 120 | 119 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → 𝑧 ∈ (𝑒 ∪ {𝑦})) |
| 121 | 118, 120 | sseldd 3604 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → 𝑧 ∈ 𝐴) |
| 122 | 117, 121 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 ∈ 𝑒) → (𝐹‘𝑧) ∈ 𝐵) |
| 123 | 122 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑧 ∈ 𝑒 → (𝐹‘𝑧) ∈ 𝐵)) |
| 124 | 123 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑧 ∈ 𝑒 → (𝐹‘𝑧) ∈ 𝐵)) |
| 125 | 124 | imp 445 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) ∧ 𝑧 ∈ 𝑒) → (𝐹‘𝑧) ∈ 𝐵) |
| 126 | 71 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → 𝑦 ∈ V) |
| 127 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ¬ 𝑦 ∈ 𝑒) |
| 128 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
| 129 | 45, 65, 114, 116, 125, 126, 127, 93, 128 | gsumunsn 18359 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦))) |
| 130 | 83, 69 | feqresmpt 6250 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) |
| 131 | 130 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧)))) |
| 132 | 83, 84 | feqresmpt 6250 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐹 ↾ 𝑒) = (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧))) |
| 133 | 132 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐹 ↾ 𝑒)) = (𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))) |
| 134 | 133 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦))) |
| 135 | 131, 134 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦)))) |
| 136 | 135 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦)) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐹‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐹‘𝑧)))(+g‘𝑀)(𝐹‘𝑦)))) |
| 137 | 129, 136 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐹 ↾ 𝑒))(+g‘𝑀)(𝐹‘𝑦))) |
| 138 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝐺:𝐴⟶𝐵) |
| 139 | 138 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ 𝑧 ∈ 𝑒) → 𝐺:𝐴⟶𝐵) |
| 140 | 121 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ 𝑧 ∈ 𝑒) → 𝑧 ∈ 𝐴) |
| 141 | 139, 140 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ 𝑧 ∈ 𝑒) → (𝐺‘𝑧) ∈ 𝐵) |
| 142 | 71 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑦 ∈ V) |
| 143 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ¬ 𝑦 ∈ 𝑒) |
| 144 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) |
| 145 | 45, 65, 79, 96, 141, 142, 143, 76, 144 | gsumunsn 18359 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦))) |
| 146 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑒 ∪ {𝑦}) ⊆ 𝐴) |
| 147 | 138, 146 | feqresmpt 6250 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ (𝑒 ∪ {𝑦})) = (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) |
| 148 | 147 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧)))) |
| 149 | | resabs1 5427 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺 ↾ 𝑒)) |
| 150 | 57, 149 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺 ↾ 𝑒)) |
| 151 | 59 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑒 ⊆ 𝐴) |
| 152 | 138, 151 | feqresmpt 6250 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ 𝑒) = (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧))) |
| 153 | 150, 152 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧))) |
| 154 | 153 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))) |
| 155 | | resabs1 5427 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑦} ⊆ (𝑒 ∪ {𝑦}) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦})) |
| 156 | 70, 155 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦})) |
| 157 | 70, 146 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → {𝑦} ⊆ 𝐴) |
| 158 | 138, 157 | feqresmpt 6250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺 ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧))) |
| 159 | 156, 158 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧))) |
| 160 | 159 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧)))) |
| 161 | 35, 44 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 162 | 161 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑀 ∈ Mnd) |
| 163 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ V) |
| 164 | 73 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ (𝑒 ∪ {𝑦})) |
| 165 | 146, 164 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → 𝑦 ∈ 𝐴) |
| 166 | 138, 165 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝐺‘𝑦) ∈ 𝐵) |
| 167 | 144 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ 𝑧 = 𝑦) → (𝐺‘𝑧) = (𝐺‘𝑦)) |
| 168 | 45, 162, 163, 166, 167 | gsumsnd 18352 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝑧 ∈ {𝑦} ↦ (𝐺‘𝑧))) = (𝐺‘𝑦)) |
| 169 | 160, 168 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝐺‘𝑦)) |
| 170 | 154, 169 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦))) |
| 171 | 148, 170 | eqeq12d 2637 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦)))) |
| 172 | 171 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) ↔ (𝑀 Σg (𝑧 ∈ (𝑒 ∪ {𝑦}) ↦ (𝐺‘𝑧))) = ((𝑀 Σg (𝑧 ∈ 𝑒 ↦ (𝐺‘𝑧)))(+g‘𝑀)(𝐺‘𝑦)))) |
| 173 | 145, 172 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})))) |
| 174 | 57, 149 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒) = (𝐺 ↾ 𝑒) |
| 175 | 174 | oveq2i 6661 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 Σg
((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒)) = (𝑀 Σg (𝐺 ↾ 𝑒)) |
| 176 | 70, 155 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}) = (𝐺 ↾ {𝑦}) |
| 177 | 176 | oveq2i 6661 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 Σg
((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦})) = (𝑀 Σg (𝐺 ↾ {𝑦})) |
| 178 | 175, 177 | oveq12i 6662 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 Σg
((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ 𝑒))(+g‘𝑀)(𝑀 Σg ((𝐺 ↾ (𝑒 ∪ {𝑦})) ↾ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))) |
| 179 | 173, 178 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝑀 Σg (𝐺 ↾ {𝑦})))) |
| 180 | 70, 69 | syl5ss 3614 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → {𝑦} ⊆ 𝐴) |
| 181 | 68, 180 | feqresmpt 6250 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝐺 ↾ {𝑦}) = (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥))) |
| 182 | 181 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥)))) |
| 183 | | cmnmnd 18208 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ CMnd → 𝑀 ∈ Mnd) |
| 184 | 79, 183 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → 𝑀 ∈ Mnd) |
| 185 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 186 | 45, 185 | gsumsn 18354 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ Mnd ∧ 𝑦 ∈ V ∧ (𝐺‘𝑦) ∈ 𝐵) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥))) = (𝐺‘𝑦)) |
| 187 | 184, 142,
76, 186 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝑥 ∈ {𝑦} ↦ (𝐺‘𝑥))) = (𝐺‘𝑦)) |
| 188 | 182, 187 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ {𝑦})) = (𝐺‘𝑦)) |
| 189 | 188 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝑀 Σg (𝐺 ↾ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 190 | 179, 189 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 191 | 190 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦}))) = ((𝑀 Σg (𝐺 ↾ 𝑒))(+g‘𝑀)(𝐺‘𝑦))) |
| 192 | 115, 137,
191 | 3brtr4d 4685 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))) |
| 193 | 62, 63, 64, 192 | syl21anc 1325 |
. . . . . . . . 9
⊢ ((((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) ∧ (𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴)) ∧ (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))) |
| 194 | 193 | exp31 630 |
. . . . . . . 8
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → ((𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒)) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 195 | 194 | a2d 29 |
. . . . . . 7
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) → (((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 196 | 61, 195 | syl5 34 |
. . . . . 6
⊢ ((𝑒 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑒) → (((𝜑 ∧ 𝑒 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝑒)) ≤ (𝑀 Σg (𝐺 ↾ 𝑒))) → ((𝜑 ∧ (𝑒 ∪ {𝑦}) ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ (𝑒 ∪ {𝑦}))) ≤ (𝑀 Σg (𝐺 ↾ (𝑒 ∪ {𝑦})))))) |
| 197 | 10, 18, 26, 34, 56, 196 | findcard2s 8201 |
. . . . 5
⊢ (𝐴 ∈ Fin → ((𝜑 ∧ 𝐴 ⊆ 𝐴) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴)))) |
| 198 | 197 | imp 445 |
. . . 4
⊢ ((𝐴 ∈ Fin ∧ (𝜑 ∧ 𝐴 ⊆ 𝐴)) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 199 | 2, 198 | mpanr2 720 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝜑) → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 200 | 1, 199 | mpancom 703 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ 𝐴)) ≤ (𝑀 Σg (𝐺 ↾ 𝐴))) |
| 201 | | fnresdm 6000 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| 202 | 105, 201 | syl 17 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
| 203 | 202 | oveq2d 6666 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐹 ↾ 𝐴)) = (𝑀 Σg 𝐹)) |
| 204 | | fnresdm 6000 |
. . . 4
⊢ (𝐺 Fn 𝐴 → (𝐺 ↾ 𝐴) = 𝐺) |
| 205 | 107, 204 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 ↾ 𝐴) = 𝐺) |
| 206 | 205 | oveq2d 6666 |
. 2
⊢ (𝜑 → (𝑀 Σg (𝐺 ↾ 𝐴)) = (𝑀 Σg 𝐺)) |
| 207 | 200, 203,
206 | 3brtr3d 4684 |
1
⊢ (𝜑 → (𝑀 Σg 𝐹) ≤ (𝑀 Σg 𝐺)) |