![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onintopssconn | Structured version Visualization version GIF version |
Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
Ref | Expression |
---|---|
onintopssconn | ⊢ (On ∩ Top) ⊆ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3796 | . . 3 ⊢ (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top)) | |
2 | eloni 5733 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
3 | ordtopconn 32438 | . . . . 5 ⊢ (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) |
5 | 4 | biimpa 501 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn) |
6 | 1, 5 | sylbi 207 | . 2 ⊢ (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn) |
7 | 6 | ssriv 3607 | 1 ⊢ (On ∩ Top) ⊆ Conn |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 Ord word 5722 Oncon0 5723 Topctop 20698 Conncconn 21214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-topgen 16104 df-top 20699 df-bases 20750 df-cld 20823 df-conn 21215 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |