Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuct0 Structured version   Visualization version   GIF version

Theorem onsuct0 32440
Description: A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
Assertion
Ref Expression
onsuct0 (𝐴 ∈ On → suc 𝐴 ∈ Kol2)

Proof of Theorem onsuct0
Dummy variables 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 5733 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 df-ral 2917 . . . . . 6 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) ↔ ∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)))
3 ordelon 5747 . . . . . . . . . . 11 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
4 ordelon 5747 . . . . . . . . . . 11 ((Ord 𝐴𝑦𝐴) → 𝑦 ∈ On)
53, 4anim12dan 882 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 ∈ On ∧ 𝑦 ∈ On))
6 ordsuc 7014 . . . . . . . . . . . 12 (Ord 𝐴 ↔ Ord suc 𝐴)
7 ordelon 5747 . . . . . . . . . . . . 13 ((Ord suc 𝐴𝑜 ∈ suc 𝐴) → 𝑜 ∈ On)
87ex 450 . . . . . . . . . . . 12 (Ord suc 𝐴 → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
96, 8sylbi 207 . . . . . . . . . . 11 (Ord 𝐴 → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
109adantr 481 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑜 ∈ suc 𝐴𝑜 ∈ On))
11 notbi 309 . . . . . . . . . . . 12 ((𝑥𝑜𝑦𝑜) ↔ (¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜))
12 ontri1 5757 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜𝑥 ↔ ¬ 𝑥𝑜))
13 onsssuc 5813 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (𝑜𝑥𝑜 ∈ suc 𝑥))
1412, 13bitr3d 270 . . . . . . . . . . . . . . 15 ((𝑜 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥𝑜𝑜 ∈ suc 𝑥))
1514adantrr 753 . . . . . . . . . . . . . 14 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑥𝑜𝑜 ∈ suc 𝑥))
16 ontri1 5757 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜𝑦 ↔ ¬ 𝑦𝑜))
17 onsssuc 5813 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (𝑜𝑦𝑜 ∈ suc 𝑦))
1816, 17bitr3d 270 . . . . . . . . . . . . . . 15 ((𝑜 ∈ On ∧ 𝑦 ∈ On) → (¬ 𝑦𝑜𝑜 ∈ suc 𝑦))
1918adantrl 752 . . . . . . . . . . . . . 14 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → (¬ 𝑦𝑜𝑜 ∈ suc 𝑦))
2015, 19bibi12d 335 . . . . . . . . . . . . 13 ((𝑜 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦 ∈ On)) → ((¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2120ancoms 469 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((¬ 𝑥𝑜 ↔ ¬ 𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2211, 21syl5bb 272 . . . . . . . . . . 11 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥𝑜𝑦𝑜) ↔ (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
2322biimpd 219 . . . . . . . . . 10 (((𝑥 ∈ On ∧ 𝑦 ∈ On) ∧ 𝑜 ∈ On) → ((𝑥𝑜𝑦𝑜) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
245, 10, 23syl6an 568 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑜 ∈ suc 𝐴 → ((𝑥𝑜𝑦𝑜) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))))
2524a2d 29 . . . . . . . 8 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → (𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))))
26 ordelss 5739 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑥𝐴) → 𝑥𝐴)
27 ordelord 5745 . . . . . . . . . . . . . . 15 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
28 ordsucsssuc 7023 . . . . . . . . . . . . . . . 16 ((Ord 𝑥 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
2928ancoms 469 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord 𝑥) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
3027, 29syldan 487 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥 ⊆ suc 𝐴))
3126, 30mpbid 222 . . . . . . . . . . . . 13 ((Ord 𝐴𝑥𝐴) → suc 𝑥 ⊆ suc 𝐴)
3231ssneld 3605 . . . . . . . . . . . 12 ((Ord 𝐴𝑥𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥))
3332adantrr 753 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑥))
34 ordelss 5739 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑦𝐴) → 𝑦𝐴)
35 ordelord 5745 . . . . . . . . . . . . . . 15 ((Ord 𝐴𝑦𝐴) → Ord 𝑦)
36 ordsucsssuc 7023 . . . . . . . . . . . . . . . 16 ((Ord 𝑦 ∧ Ord 𝐴) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3736ancoms 469 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord 𝑦) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3835, 37syldan 487 . . . . . . . . . . . . . 14 ((Ord 𝐴𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ⊆ suc 𝐴))
3934, 38mpbid 222 . . . . . . . . . . . . 13 ((Ord 𝐴𝑦𝐴) → suc 𝑦 ⊆ suc 𝐴)
4039ssneld 3605 . . . . . . . . . . . 12 ((Ord 𝐴𝑦𝐴) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦))
4140adantrl 752 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → ¬ 𝑜 ∈ suc 𝑦))
4233, 41jcad 555 . . . . . . . . . 10 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦)))
43 pm5.21 903 . . . . . . . . . 10 ((¬ 𝑜 ∈ suc 𝑥 ∧ ¬ 𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))
4442, 43syl6 35 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (¬ 𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
45 idd 24 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4644, 45jad 174 . . . . . . . 8 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4725, 46syld 47 . . . . . . 7 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → (𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
4847alimdv 1845 . . . . . 6 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜(𝑜 ∈ suc 𝐴 → (𝑥𝑜𝑦𝑜)) → ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
492, 48syl5bi 232 . . . . 5 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦)))
50 dfcleq 2616 . . . . . . 7 (suc 𝑥 = suc 𝑦 ↔ ∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦))
51 suc11 5831 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (suc 𝑥 = suc 𝑦𝑥 = 𝑦))
5250, 51syl5bbr 274 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦))
535, 52syl 17 . . . . 5 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜(𝑜 ∈ suc 𝑥𝑜 ∈ suc 𝑦) ↔ 𝑥 = 𝑦))
5449, 53sylibd 229 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
5554ralrimivva 2971 . . 3 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
561, 55syl 17 . 2 (𝐴 ∈ On → ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
57 onsuctopon 32433 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
58 ist0-2 21148 . . 3 (suc 𝐴 ∈ (TopOn‘𝐴) → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
5957, 58syl 17 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ Kol2 ↔ ∀𝑥𝐴𝑦𝐴 (∀𝑜 ∈ suc 𝐴(𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
6056, 59mpbird 247 1 (𝐴 ∈ On → suc 𝐴 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  wral 2912  wss 3574  Ord word 5722  Oncon0 5723  suc csuc 5725  cfv 5888  TopOnctopon 20715  Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-t0 21117
This theorem is referenced by:  ordtopt0  32441
  Copyright terms: Public domain W3C validator