Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsetreclem2 Structured version   Visualization version   GIF version

Theorem onsetreclem2 42449
Description: Lemma for onsetrec 42451. (Contributed by Emmett Weisz, 22-Jun-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
onsetreclem2.1 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
Assertion
Ref Expression
onsetreclem2 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Distinct variable group:   𝑥,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑎)

Proof of Theorem onsetreclem2
StepHypRef Expression
1 onsetreclem2.1 . . 3 𝐹 = (𝑥 ∈ V ↦ { 𝑥, suc 𝑥})
21onsetreclem1 42448 . 2 (𝐹𝑎) = { 𝑎, suc 𝑎}
3 vex 3203 . . . 4 𝑎 ∈ V
43ssonunii 6987 . . 3 (𝑎 ⊆ On → 𝑎 ∈ On)
5 suceloni 7013 . . . 4 ( 𝑎 ∈ On → suc 𝑎 ∈ On)
6 prssi 4353 . . . 4 (( 𝑎 ∈ On ∧ suc 𝑎 ∈ On) → { 𝑎, suc 𝑎} ⊆ On)
75, 6mpdan 702 . . 3 ( 𝑎 ∈ On → { 𝑎, suc 𝑎} ⊆ On)
84, 7syl 17 . 2 (𝑎 ⊆ On → { 𝑎, suc 𝑎} ⊆ On)
92, 8syl5eqss 3649 1 (𝑎 ⊆ On → (𝐹𝑎) ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  {cpr 4179   cuni 4436  cmpt 4729  Oncon0 5723  suc csuc 5725  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  onsetrec  42451
  Copyright terms: Public domain W3C validator