MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsucuni2 Structured version   Visualization version   GIF version

Theorem onsucuni2 7034
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
onsucuni2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)

Proof of Theorem onsucuni2
StepHypRef Expression
1 eleq1 2689 . . . . . 6 (𝐴 = suc 𝐵 → (𝐴 ∈ On ↔ suc 𝐵 ∈ On))
21biimpac 503 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐵 ∈ On)
3 eloni 5733 . . . . 5 (suc 𝐵 ∈ On → Ord suc 𝐵)
4 ordsuc 7014 . . . . . . . 8 (Ord 𝐵 ↔ Ord suc 𝐵)
5 ordunisuc 7032 . . . . . . . 8 (Ord 𝐵 suc 𝐵 = 𝐵)
64, 5sylbir 225 . . . . . . 7 (Ord suc 𝐵 suc 𝐵 = 𝐵)
7 suceq 5790 . . . . . . 7 ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵)
86, 7syl 17 . . . . . 6 (Ord suc 𝐵 → suc suc 𝐵 = suc 𝐵)
9 ordunisuc 7032 . . . . . 6 (Ord suc 𝐵 suc suc 𝐵 = suc 𝐵)
108, 9eqtr4d 2659 . . . . 5 (Ord suc 𝐵 → suc suc 𝐵 = suc suc 𝐵)
112, 3, 103syl 18 . . . 4 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc suc 𝐵 = suc suc 𝐵)
12 unieq 4444 . . . . . 6 (𝐴 = suc 𝐵 𝐴 = suc 𝐵)
13 suceq 5790 . . . . . 6 ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
1412, 13syl 17 . . . . 5 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
15 suceq 5790 . . . . . 6 (𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵)
1615unieqd 4446 . . . . 5 (𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵)
1714, 16eqeq12d 2637 . . . 4 (𝐴 = suc 𝐵 → (suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵))
1811, 17syl5ibr 236 . . 3 (𝐴 = suc 𝐵 → ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴))
1918anabsi7 860 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = suc 𝐴)
20 eloni 5733 . . . 4 (𝐴 ∈ On → Ord 𝐴)
21 ordunisuc 7032 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
2220, 21syl 17 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
2322adantr 481 . 2 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
2419, 23eqtrd 2656 1 ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990   cuni 4436  Ord word 5722  Oncon0 5723  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  rankxplim3  8744  rankxpsuc  8745
  Copyright terms: Public domain W3C validator