![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orduniss2 | Structured version Visualization version GIF version |
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
Ref | Expression |
---|---|
orduniss2 | ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2921 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
2 | incom 3805 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) | |
3 | inab 3895 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ∈ On} ∩ {𝑥 ∣ 𝑥 ⊆ 𝐴}) = {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} | |
4 | df-pw 4160 | . . . . . . . 8 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
5 | 4 | eqcomi 2631 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = 𝒫 𝐴 |
6 | abid2 2745 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ On} = On | |
7 | 5, 6 | ineq12i 3812 | . . . . . 6 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∩ {𝑥 ∣ 𝑥 ∈ On}) = (𝒫 𝐴 ∩ On) |
8 | 2, 3, 7 | 3eqtr3i 2652 | . . . . 5 ⊢ {𝑥 ∣ (𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴)} = (𝒫 𝐴 ∩ On) |
9 | 1, 8 | eqtri 2644 | . . . 4 ⊢ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = (𝒫 𝐴 ∩ On) |
10 | ordpwsuc 7015 | . . . 4 ⊢ (Ord 𝐴 → (𝒫 𝐴 ∩ On) = suc 𝐴) | |
11 | 9, 10 | syl5eq 2668 | . . 3 ⊢ (Ord 𝐴 → {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = suc 𝐴) |
12 | 11 | unieqd 4446 | . 2 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = ∪ suc 𝐴) |
13 | ordunisuc 7032 | . 2 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
14 | 12, 13 | eqtrd 2656 | 1 ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 Ord word 5722 Oncon0 5723 suc csuc 5725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |