| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsucuni2 | Structured version Visualization version Unicode version | ||
| Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| onsucuni2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . . 6
| |
| 2 | 1 | biimpac 503 |
. . . . 5
|
| 3 | eloni 5733 |
. . . . 5
| |
| 4 | ordsuc 7014 |
. . . . . . . 8
| |
| 5 | ordunisuc 7032 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylbir 225 |
. . . . . . 7
|
| 7 | suceq 5790 |
. . . . . . 7
| |
| 8 | 6, 7 | syl 17 |
. . . . . 6
|
| 9 | ordunisuc 7032 |
. . . . . 6
| |
| 10 | 8, 9 | eqtr4d 2659 |
. . . . 5
|
| 11 | 2, 3, 10 | 3syl 18 |
. . . 4
|
| 12 | unieq 4444 |
. . . . . 6
| |
| 13 | suceq 5790 |
. . . . . 6
| |
| 14 | 12, 13 | syl 17 |
. . . . 5
|
| 15 | suceq 5790 |
. . . . . 6
| |
| 16 | 15 | unieqd 4446 |
. . . . 5
|
| 17 | 14, 16 | eqeq12d 2637 |
. . . 4
|
| 18 | 11, 17 | syl5ibr 236 |
. . 3
|
| 19 | 18 | anabsi7 860 |
. 2
|
| 20 | eloni 5733 |
. . . 4
| |
| 21 | ordunisuc 7032 |
. . . 4
| |
| 22 | 20, 21 | syl 17 |
. . 3
|
| 23 | 22 | adantr 481 |
. 2
|
| 24 | 19, 23 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 |
| This theorem is referenced by: rankxplim3 8744 rankxpsuc 8745 |
| Copyright terms: Public domain | W3C validator |