![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabresid | Structured version Visualization version GIF version |
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
opabresid | ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab 5446 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | equcom 1945 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
3 | 2 | opabbii 4717 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
4 | dfid3 5025 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
5 | 3, 4 | eqtr4i 2647 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} = I |
6 | 5 | reseq1i 5392 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = ( I ↾ 𝐴) |
7 | 1, 6 | eqtr3i 2646 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {copab 4712 I cid 5023 ↾ cres 5116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-res 5126 |
This theorem is referenced by: mptresid 5456 pospo 16973 opsrtoslem1 19484 tgphaus 21920 relexp0eq 37993 |
Copyright terms: Public domain | W3C validator |