MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem1 Structured version   Visualization version   GIF version

Theorem opsrtoslem1 19484
Description: Lemma for opsrtos 19486. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem1
StepHypRef Expression
1 opsrtoslem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrso.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 opsrtoslem.b . . 3 𝐵 = (Base‘𝑆)
4 opsrtoslem.q . . 3 < = (lt‘𝑅)
5 opsrtoslem.c . . 3 𝐶 = (𝑇 <bag 𝐼)
6 opsrtoslem.d . . 3 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 opsrtoslem.l . . 3 = (le‘𝑂)
8 opsrso.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
91, 2, 3, 4, 5, 6, 7, 8opsrle 19475 . 2 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
10 unopab 4728 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
11 inopab 5252 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}) = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
12 df-xp 5120 . . . . . 6 (𝐵 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}
1312ineq2i 3811 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)})
14 vex 3203 . . . . . . . . 9 𝑥 ∈ V
15 vex 3203 . . . . . . . . 9 𝑦 ∈ V
1614, 15prss 4351 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1716anbi1i 731 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝜓))
18 ancom 466 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
1917, 18bitr3i 266 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐵𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
2019opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
2111, 13, 203eqtr4i 2654 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)}
22 opabresid 5455 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
23 equcom 1945 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
2423anbi2i 730 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ (𝑥𝐵𝑦 = 𝑥))
25 eleq1 2689 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2625biimpac 503 . . . . . . . . 9 ((𝑥𝐵𝑥 = 𝑦) → 𝑦𝐵)
2726pm4.71i 664 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
2824, 27bitr3i 266 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
29 an32 839 . . . . . . 7 (((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦))
3016anbi1i 731 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3128, 29, 303bitri 286 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3231opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3322, 32eqtr3i 2646 . . . 4 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3421, 33uneq12i 3765 . . 3 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)})
35 opsrtoslem.ps . . . . . . 7 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
3635orbi1i 542 . . . . . 6 ((𝜓𝑥 = 𝑦) ↔ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))
3736anbi2i 730 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
38 andi 911 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
3937, 38bitr3i 266 . . . 4 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
4039opabbii 4717 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
4110, 34, 403eqtr4ri 2655 . 2 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
429, 41syl6eq 2672 1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  cun 3572  cin 3573  wss 3574  {cpr 4179   class class class wbr 4653  {copab 4712   I cid 5023   We wwe 5072   × cxp 5112  ccnv 5113  cres 5116  cima 5117  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cn 11020  0cn0 11292  Basecbs 15857  lecple 15948  ltcplt 16941  Tosetctos 17033   mPwSer cmps 19351   <bag cltb 19354   ordPwSer copws 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ple 15961  df-psr 19356  df-opsr 19360
This theorem is referenced by:  opsrtoslem2  19485
  Copyright terms: Public domain W3C validator