MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgphaus Structured version   Visualization version   GIF version

Theorem tgphaus 21920
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tgphaus.1 0 = (0g𝐺)
tgphaus.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgphaus (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))

Proof of Theorem tgphaus
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 21882 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 eqid 2622 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 tgphaus.1 . . . . . 6 0 = (0g𝐺)
42, 3grpidcl 17450 . . . . 5 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
51, 4syl 17 . . . 4 (𝐺 ∈ TopGrp → 0 ∈ (Base‘𝐺))
6 tgphaus.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
76, 2tgptopon 21886 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
8 toponuni 20719 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
97, 8syl 17 . . . 4 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
105, 9eleqtrd 2703 . . 3 (𝐺 ∈ TopGrp → 0 𝐽)
11 eqid 2622 . . . . 5 𝐽 = 𝐽
1211sncld 21175 . . . 4 ((𝐽 ∈ Haus ∧ 0 𝐽) → { 0 } ∈ (Clsd‘𝐽))
1312expcom 451 . . 3 ( 0 𝐽 → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
1410, 13syl 17 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
15 eqid 2622 . . . . . 6 (-g𝐺) = (-g𝐺)
166, 15tgpsubcn 21894 . . . . 5 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
17 cnclima 21072 . . . . . 6 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ { 0 } ∈ (Clsd‘𝐽)) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)))
1817ex 450 . . . . 5 ((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
1916, 18syl 17 . . . 4 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
20 cnvimass 5485 . . . . . . . . 9 ((-g𝐺) “ { 0 }) ⊆ dom (-g𝐺)
212, 15grpsubf 17494 . . . . . . . . . . 11 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
221, 21syl 17 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
23 fdm 6051 . . . . . . . . . 10 ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺)))
2422, 23syl 17 . . . . . . . . 9 (𝐺 ∈ TopGrp → dom (-g𝐺) = ((Base‘𝐺) × (Base‘𝐺)))
2520, 24syl5sseq 3653 . . . . . . . 8 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
26 relxp 5227 . . . . . . . 8 Rel ((Base‘𝐺) × (Base‘𝐺))
27 relss 5206 . . . . . . . 8 (((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)) → (Rel ((Base‘𝐺) × (Base‘𝐺)) → Rel ((-g𝐺) “ { 0 })))
2825, 26, 27mpisyl 21 . . . . . . 7 (𝐺 ∈ TopGrp → Rel ((-g𝐺) “ { 0 }))
29 dfrel4v 5584 . . . . . . 7 (Rel ((-g𝐺) “ { 0 }) ↔ ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
3028, 29sylib 208 . . . . . 6 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
31 ffn 6045 . . . . . . . . . . . 12 ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
3222, 31syl 17 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
33 elpreima 6337 . . . . . . . . . . 11 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
3432, 33syl 17 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
35 opelxp 5146 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
3635anbi1i 731 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }))
372, 3, 15grpsubeq0 17501 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
38373expb 1266 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
391, 38sylan 488 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
40 df-ov 6653 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
4140eleq1i 2692 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })
42 ovex 6678 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) ∈ V
4342elsn 4192 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
4441, 43bitr3i 266 . . . . . . . . . . . . 13 (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
45 equcom 1945 . . . . . . . . . . . . 13 (𝑦 = 𝑥𝑥 = 𝑦)
4639, 44, 453bitr4g 303 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ 𝑦 = 𝑥))
4746pm5.32da 673 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4836, 47syl5bb 272 . . . . . . . . . 10 (𝐺 ∈ TopGrp → ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4934, 48bitrd 268 . . . . . . . . 9 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
50 df-br 4654 . . . . . . . . 9 (𝑥((-g𝐺) “ { 0 })𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }))
51 eleq1 2689 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐺) ↔ 𝑥 ∈ (Base‘𝐺)))
5251biimparc 504 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) → 𝑦 ∈ (Base‘𝐺))
5352pm4.71i 664 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
54 an32 839 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
5553, 54bitr4i 267 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥))
5649, 50, 553bitr4g 303 . . . . . . . 8 (𝐺 ∈ TopGrp → (𝑥((-g𝐺) “ { 0 })𝑦 ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)))
5756opabbidv 4716 . . . . . . 7 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)})
58 opabresid 5455 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)} = ( I ↾ (Base‘𝐺))
5957, 58syl6eq 2672 . . . . . 6 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = ( I ↾ (Base‘𝐺)))
609reseq2d 5396 . . . . . 6 (𝐺 ∈ TopGrp → ( I ↾ (Base‘𝐺)) = ( I ↾ 𝐽))
6130, 59, 603eqtrd 2660 . . . . 5 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = ( I ↾ 𝐽))
6261eleq1d 2686 . . . 4 (𝐺 ∈ TopGrp → (((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6319, 62sylibd 229 . . 3 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
64 topontop 20718 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
657, 64syl 17 . . . 4 (𝐺 ∈ TopGrp → 𝐽 ∈ Top)
6611hausdiag 21448 . . . . 5 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6766baib 944 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6865, 67syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6963, 68sylibrd 249 . 2 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → 𝐽 ∈ Haus))
7014, 69impbid 202 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653  {copab 4712   I cid 5023   × cxp 5112  ccnv 5113  dom cdm 5114  cres 5116  cima 5117  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  TopOpenctopn 16082  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  Topctop 20698  TopOnctopon 20715  Clsdccld 20820   Cn ccn 21028  Hauscha 21112   ×t ctx 21363  TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-0g 16102  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-t1 21118  df-haus 21119  df-tx 21365  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  tgpt1  21921  qustgphaus  21926
  Copyright terms: Public domain W3C validator