Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opeldifid Structured version   Visualization version   Unicode version

Theorem opeldifid 29412
Description: Ordered pair elementhood outside of the diagonal. (Contributed by Thierry Arnoux, 1-Jan-2020.)
Assertion
Ref Expression
opeldifid  |-  ( Rel 
A  ->  ( <. X ,  Y >.  e.  ( A  \  _I  )  <->  (
<. X ,  Y >.  e.  A  /\  X  =/= 
Y ) ) )

Proof of Theorem opeldifid
StepHypRef Expression
1 reldif 5238 . . . 4  |-  ( Rel 
A  ->  Rel  ( A 
\  _I  ) )
2 brrelex2 5157 . . . 4  |-  ( ( Rel  ( A  \  _I  )  /\  X ( A  \  _I  ) Y )  ->  Y  e.  _V )
31, 2sylan 488 . . 3  |-  ( ( Rel  A  /\  X
( A  \  _I  ) Y )  ->  Y  e.  _V )
4 brrelex2 5157 . . . 4  |-  ( ( Rel  A  /\  X A Y )  ->  Y  e.  _V )
54adantrr 753 . . 3  |-  ( ( Rel  A  /\  ( X A Y  /\  X  =/=  Y ) )  ->  Y  e.  _V )
6 brdif 4705 . . . 4  |-  ( X ( A  \  _I  ) Y  <->  ( X A Y  /\  -.  X  _I  Y ) )
7 ideqg 5273 . . . . . 6  |-  ( Y  e.  _V  ->  ( X  _I  Y  <->  X  =  Y ) )
87necon3bbid 2831 . . . . 5  |-  ( Y  e.  _V  ->  ( -.  X  _I  Y  <->  X  =/=  Y ) )
98anbi2d 740 . . . 4  |-  ( Y  e.  _V  ->  (
( X A Y  /\  -.  X  _I  Y )  <->  ( X A Y  /\  X  =/= 
Y ) ) )
106, 9syl5bb 272 . . 3  |-  ( Y  e.  _V  ->  ( X ( A  \  _I  ) Y  <->  ( X A Y  /\  X  =/= 
Y ) ) )
113, 5, 10pm5.21nd 941 . 2  |-  ( Rel 
A  ->  ( X
( A  \  _I  ) Y  <->  ( X A Y  /\  X  =/= 
Y ) ) )
12 df-br 4654 . 2  |-  ( X ( A  \  _I  ) Y  <->  <. X ,  Y >.  e.  ( A  \  _I  ) )
13 df-br 4654 . . 3  |-  ( X A Y  <->  <. X ,  Y >.  e.  A )
1413anbi1i 731 . 2  |-  ( ( X A Y  /\  X  =/=  Y )  <->  ( <. X ,  Y >.  e.  A  /\  X  =/=  Y
) )
1511, 12, 143bitr3g 302 1  |-  ( Rel 
A  ->  ( <. X ,  Y >.  e.  ( A  \  _I  )  <->  (
<. X ,  Y >.  e.  A  /\  X  =/= 
Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571   <.cop 4183   class class class wbr 4653    _I cid 5023   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121
This theorem is referenced by:  qtophaus  29903
  Copyright terms: Public domain W3C validator