Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opropabco Structured version   Visualization version   GIF version

Theorem opropabco 33518
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
opropabco.1 (𝑥𝐴𝐵𝑅)
opropabco.2 (𝑥𝐴𝐶𝑆)
opropabco.3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
opropabco.4 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
Assertion
Ref Expression
opropabco (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem opropabco
StepHypRef Expression
1 opropabco.1 . . 3 (𝑥𝐴𝐵𝑅)
2 opropabco.2 . . 3 (𝑥𝐴𝐶𝑆)
3 opelxpi 5148 . . 3 ((𝐵𝑅𝐶𝑆) → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
41, 2, 3syl2anc 693 . 2 (𝑥𝐴 → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
5 opropabco.3 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
6 opropabco.4 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
7 df-ov 6653 . . . . . 6 (𝐵𝑀𝐶) = (𝑀‘⟨𝐵, 𝐶⟩)
87eqeq2i 2634 . . . . 5 (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))
98anbi2i 730 . . . 4 ((𝑥𝐴𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩)))
109opabbii 4717 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
116, 10eqtri 2644 . 2 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
124, 5, 11fnopabco 33517 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cop 4183  {copab 4712   × cxp 5112  ccom 5118   Fn wfn 5883  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator