Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opropabco Structured version   Visualization version   Unicode version

Theorem opropabco 33518
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
opropabco.1  |-  ( x  e.  A  ->  B  e.  R )
opropabco.2  |-  ( x  e.  A  ->  C  e.  S )
opropabco.3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  <. B ,  C >. ) }
opropabco.4  |-  G  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( B M C ) ) }
Assertion
Ref Expression
opropabco  |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
Distinct variable groups:    x, A, y    y, B    y, C    x, M, y    x, R, y    x, S, y
Allowed substitution hints:    B( x)    C( x)    F( x, y)    G( x, y)

Proof of Theorem opropabco
StepHypRef Expression
1 opropabco.1 . . 3  |-  ( x  e.  A  ->  B  e.  R )
2 opropabco.2 . . 3  |-  ( x  e.  A  ->  C  e.  S )
3 opelxpi 5148 . . 3  |-  ( ( B  e.  R  /\  C  e.  S )  -> 
<. B ,  C >.  e.  ( R  X.  S
) )
41, 2, 3syl2anc 693 . 2  |-  ( x  e.  A  ->  <. B ,  C >.  e.  ( R  X.  S ) )
5 opropabco.3 . 2  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  <. B ,  C >. ) }
6 opropabco.4 . . 3  |-  G  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( B M C ) ) }
7 df-ov 6653 . . . . . 6  |-  ( B M C )  =  ( M `  <. B ,  C >. )
87eqeq2i 2634 . . . . 5  |-  ( y  =  ( B M C )  <->  y  =  ( M `  <. B ,  C >. ) )
98anbi2i 730 . . . 4  |-  ( ( x  e.  A  /\  y  =  ( B M C ) )  <->  ( x  e.  A  /\  y  =  ( M `  <. B ,  C >. ) ) )
109opabbii 4717 . . 3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( B M C ) ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( M `  <. B ,  C >. ) ) }
116, 10eqtri 2644 . 2  |-  G  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( M `  <. B ,  C >. ) ) }
124, 5, 11fnopabco 33517 1  |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   {copab 4712    X. cxp 5112    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator