MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucndlem Structured version   Visualization version   GIF version

Theorem fmucndlem 22095
Description: Lemma for fmucnd 22096. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
fmucndlem ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem fmucndlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5127 . . 3 ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴))
2 simpr 477 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → 𝐴𝑋)
3 resmpt2 6758 . . . . 5 ((𝐴𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
42, 3sylancom 701 . . . 4 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
54rneqd 5353 . . 3 ((𝐹 Fn 𝑋𝐴𝑋) → ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
61, 5syl5eq 2668 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
7 vex 3203 . . . . . . . . . . . . 13 𝑥 ∈ V
8 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
97, 8op1std 7178 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (1st𝑝) = 𝑥)
109fveq2d 6195 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑝)) = (𝐹𝑥))
117, 8op2ndd 7179 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (2nd𝑝) = 𝑦)
1211fveq2d 6195 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑝)) = (𝐹𝑦))
1310, 12opeq12d 4410 . . . . . . . . . 10 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1413mpt2mpt 6752 . . . . . . . . 9 (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1514eqcomi 2631 . . . . . . . 8 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
1615rneqi 5352 . . . . . . 7 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ran (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
17 fvexd 6203 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(1st𝑝)) ∈ V)
18 fvexd 6203 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(2nd𝑝)) ∈ V)
1916, 17, 18fliftrel 6558 . . . . . 6 (⊤ → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V))
2019trud 1493 . . . . 5 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V)
2120sseli 3599 . . . 4 (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) → 𝑝 ∈ (V × V))
2221adantl 482 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)) → 𝑝 ∈ (V × V))
23 xpss 5226 . . . . 5 ((𝐹𝐴) × (𝐹𝐴)) ⊆ (V × V)
2423sseli 3599 . . . 4 (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) → 𝑝 ∈ (V × V))
2524adantl 482 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))) → 𝑝 ∈ (V × V))
26 fvelimab 6253 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((1st𝑝) ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = (1st𝑝)))
27 fvelimab 6253 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((2nd𝑝) ∈ (𝐹𝐴) ↔ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
2826, 27anbi12d 747 . . . . . . 7 ((𝐹 Fn 𝑋𝐴𝑋) → (((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝))))
29 eqid 2622 . . . . . . . . 9 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
30 opex 4932 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
3129, 30elrnmpt2 6773 . . . . . . . 8 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
32 eqcom 2629 . . . . . . . . . 10 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
33 fvex 6201 . . . . . . . . . . 11 (1st𝑝) ∈ V
34 fvex 6201 . . . . . . . . . . 11 (2nd𝑝) ∈ V
3533, 34opth2 4949 . . . . . . . . . 10 (⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
3632, 35bitri 264 . . . . . . . . 9 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
37362rexbii 3042 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
38 reeanv 3107 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
3931, 37, 383bitri 286 . . . . . . 7 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
4028, 39syl6rbbr 279 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴))))
41 opelxp 5146 . . . . . 6 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)))
4240, 41syl6bbr 278 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4342adantr 481 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
44 1st2nd2 7205 . . . . . 6 (𝑝 ∈ (V × V) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4544adantl 482 . . . . 5 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4645eleq1d 2686 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)))
4745eleq1d 2686 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4843, 46, 473bitr4d 300 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))))
4922, 25, 48eqrdav 2621 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ((𝐹𝐴) × (𝐹𝐴)))
506, 49eqtrd 2656 1 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  wrex 2913  Vcvv 3200  wss 3574  cop 4183  cmpt 4729   × cxp 5112  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  cfv 5888  cmpt2 6652  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fmucnd  22096
  Copyright terms: Public domain W3C validator