MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr3OLD Structured version   Visualization version   GIF version

Theorem ordtr3OLD 5770
Description: Obsolete proof of ordtr3 5769 as of 24-Sep-2021. (Contributed by Mario Carneiro, 30-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ordtr3OLD ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))

Proof of Theorem ordtr3OLD
StepHypRef Expression
1 simpr 477 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → Ord 𝐶)
2 ordelord 5745 . . . . . 6 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
32adantlr 751 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → Ord 𝐴)
4 ordtri1 5756 . . . . 5 ((Ord 𝐶 ∧ Ord 𝐴) → (𝐶𝐴 ↔ ¬ 𝐴𝐶))
51, 3, 4syl2an2r 876 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐶𝐴 ↔ ¬ 𝐴𝐶))
6 ordtr2 5768 . . . . . . 7 ((Ord 𝐶 ∧ Ord 𝐵) → ((𝐶𝐴𝐴𝐵) → 𝐶𝐵))
76ancoms 469 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → ((𝐶𝐴𝐴𝐵) → 𝐶𝐵))
87expcomd 454 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐶𝐴𝐶𝐵)))
98imp 445 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐶𝐴𝐶𝐵))
105, 9sylbird 250 . . 3 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (¬ 𝐴𝐶𝐶𝐵))
1110orrd 393 . 2 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐴𝐶𝐶𝐵))
1211ex 450 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wcel 1990  wss 3574  Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator