MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelord Structured version   Visualization version   GIF version

Theorem ordelord 5745
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord ((Ord 𝐴𝐵𝐴) → Ord 𝐵)

Proof of Theorem ordelord
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21anbi2d 740 . . . 4 (𝑥 = 𝐵 → ((Ord 𝐴𝑥𝐴) ↔ (Ord 𝐴𝐵𝐴)))
3 ordeq 5730 . . . 4 (𝑥 = 𝐵 → (Ord 𝑥 ↔ Ord 𝐵))
42, 3imbi12d 334 . . 3 (𝑥 = 𝐵 → (((Ord 𝐴𝑥𝐴) → Ord 𝑥) ↔ ((Ord 𝐴𝐵𝐴) → Ord 𝐵)))
5 simpll 790 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → Ord 𝐴)
6 3anrot 1043 . . . . . . . . . . . 12 ((𝑥𝐴𝑧𝑦𝑦𝑥) ↔ (𝑧𝑦𝑦𝑥𝑥𝐴))
7 3anass 1042 . . . . . . . . . . . 12 ((𝑥𝐴𝑧𝑦𝑦𝑥) ↔ (𝑥𝐴 ∧ (𝑧𝑦𝑦𝑥)))
86, 7bitr3i 266 . . . . . . . . . . 11 ((𝑧𝑦𝑦𝑥𝑥𝐴) ↔ (𝑥𝐴 ∧ (𝑧𝑦𝑦𝑥)))
9 ordtr 5737 . . . . . . . . . . . 12 (Ord 𝐴 → Tr 𝐴)
10 trel3 4760 . . . . . . . . . . . 12 (Tr 𝐴 → ((𝑧𝑦𝑦𝑥𝑥𝐴) → 𝑧𝐴))
119, 10syl 17 . . . . . . . . . . 11 (Ord 𝐴 → ((𝑧𝑦𝑦𝑥𝑥𝐴) → 𝑧𝐴))
128, 11syl5bir 233 . . . . . . . . . 10 (Ord 𝐴 → ((𝑥𝐴 ∧ (𝑧𝑦𝑦𝑥)) → 𝑧𝐴))
1312impl 650 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → 𝑧𝐴)
14 trel 4759 . . . . . . . . . . . . 13 (Tr 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
159, 14syl 17 . . . . . . . . . . . 12 (Ord 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
1615expcomd 454 . . . . . . . . . . 11 (Ord 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
1716imp31 448 . . . . . . . . . 10 (((Ord 𝐴𝑥𝐴) ∧ 𝑦𝑥) → 𝑦𝐴)
1817adantrl 752 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → 𝑦𝐴)
19 simplr 792 . . . . . . . . 9 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → 𝑥𝐴)
20 ordwe 5736 . . . . . . . . . 10 (Ord 𝐴 → E We 𝐴)
21 wetrep 5107 . . . . . . . . . 10 (( E We 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2220, 21sylan 488 . . . . . . . . 9 ((Ord 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
235, 13, 18, 19, 22syl13anc 1328 . . . . . . . 8 (((Ord 𝐴𝑥𝐴) ∧ (𝑧𝑦𝑦𝑥)) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2423ex 450 . . . . . . 7 ((Ord 𝐴𝑥𝐴) → ((𝑧𝑦𝑦𝑥) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥)))
2524pm2.43d 53 . . . . . 6 ((Ord 𝐴𝑥𝐴) → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2625alrimivv 1856 . . . . 5 ((Ord 𝐴𝑥𝐴) → ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
27 dftr2 4754 . . . . 5 (Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2826, 27sylibr 224 . . . 4 ((Ord 𝐴𝑥𝐴) → Tr 𝑥)
29 trss 4761 . . . . . . 7 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
309, 29syl 17 . . . . . 6 (Ord 𝐴 → (𝑥𝐴𝑥𝐴))
31 wess 5101 . . . . . 6 (𝑥𝐴 → ( E We 𝐴 → E We 𝑥))
3230, 20, 31syl6ci 71 . . . . 5 (Ord 𝐴 → (𝑥𝐴 → E We 𝑥))
3332imp 445 . . . 4 ((Ord 𝐴𝑥𝐴) → E We 𝑥)
34 df-ord 5726 . . . 4 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
3528, 33, 34sylanbrc 698 . . 3 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
364, 35vtoclg 3266 . 2 (𝐵𝐴 → ((Ord 𝐴𝐵𝐴) → Ord 𝐵))
3736anabsi7 860 1 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wss 3574  Tr wtr 4752   E cep 5028   We wwe 5072  Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  tron  5746  ordelon  5747  ordtr2  5768  ordtr3OLD  5770  ordintdif  5774  ordsuc  7014  ordsucss  7018  ordsucelsuc  7022  ordsucuniel  7024  limsssuc  7050  smores  7449  smo11  7461  smoord  7462  smoword  7463  smogt  7464  smorndom  7465  rdglim2  7528  oesuclem  7605  ordtypelem3  8425  r1val1  8649  rankr1ag  8665  fin23lem24  9144  onsuct0  32440  dford3  37595  ordpss  38655
  Copyright terms: Public domain W3C validator