MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr2 Structured version   Visualization version   GIF version

Theorem ordtr2 5768
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtr2 ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr2
StepHypRef Expression
1 ordelord 5745 . . . . . . . 8 ((Ord 𝐶𝐵𝐶) → Ord 𝐵)
21ex 450 . . . . . . 7 (Ord 𝐶 → (𝐵𝐶 → Ord 𝐵))
32ancld 576 . . . . . 6 (Ord 𝐶 → (𝐵𝐶 → (𝐵𝐶 ∧ Ord 𝐵)))
43anc2li 580 . . . . 5 (Ord 𝐶 → (𝐵𝐶 → (Ord 𝐶 ∧ (𝐵𝐶 ∧ Ord 𝐵))))
5 ordelpss 5751 . . . . . . . . . 10 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐵𝐶))
6 sspsstr 3712 . . . . . . . . . . 11 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
76expcom 451 . . . . . . . . . 10 (𝐵𝐶 → (𝐴𝐵𝐴𝐶))
85, 7syl6bi 243 . . . . . . . . 9 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 → (𝐴𝐵𝐴𝐶)))
98expcom 451 . . . . . . . 8 (Ord 𝐶 → (Ord 𝐵 → (𝐵𝐶 → (𝐴𝐵𝐴𝐶))))
109com23 86 . . . . . . 7 (Ord 𝐶 → (𝐵𝐶 → (Ord 𝐵 → (𝐴𝐵𝐴𝐶))))
1110imp32 449 . . . . . 6 ((Ord 𝐶 ∧ (𝐵𝐶 ∧ Ord 𝐵)) → (𝐴𝐵𝐴𝐶))
1211com12 32 . . . . 5 (𝐴𝐵 → ((Ord 𝐶 ∧ (𝐵𝐶 ∧ Ord 𝐵)) → 𝐴𝐶))
134, 12syl9 77 . . . 4 (Ord 𝐶 → (𝐴𝐵 → (𝐵𝐶𝐴𝐶)))
1413impd 447 . . 3 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
1514adantl 482 . 2 ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
16 ordelpss 5751 . 2 ((Ord 𝐴 ∧ Ord 𝐶) → (𝐴𝐶𝐴𝐶))
1715, 16sylibrd 249 1 ((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wss 3574  wpss 3575  Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  ordtr3OLD  5770  ontr2  5772  ordelinel  5825  ordelinelOLD  5826  smogt  7464  smorndom  7465  nnarcl  7696  nnawordex  7717  coftr  9095  noetalem3  31865  hfuni  32291
  Copyright terms: Public domain W3C validator