![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > padd01 | Structured version Visualization version GIF version |
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
padd01 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ 𝐵) | |
2 | simpr 477 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
3 | 0ss 3972 | . . . . 5 ⊢ ∅ ⊆ 𝐴 | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → ∅ ⊆ 𝐴) |
5 | 1, 2, 4 | 3jca 1242 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ ∅ ⊆ 𝐴)) |
6 | neirr 2803 | . . . 4 ⊢ ¬ ∅ ≠ ∅ | |
7 | 6 | intnan 960 | . . 3 ⊢ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅) |
8 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
10 | 8, 9 | paddval0 35096 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅)) |
11 | 5, 7, 10 | sylancl 694 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅)) |
12 | un0 3967 | . 2 ⊢ (𝑋 ∪ ∅) = 𝑋 | |
13 | 11, 12 | syl6eq 2672 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 Atomscatm 34550 +𝑃cpadd 35081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-padd 35082 |
This theorem is referenced by: paddasslem17 35122 pmodlem2 35133 |
Copyright terms: Public domain | W3C validator |