Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddidm Structured version   Visualization version   GIF version

Theorem paddidm 35127
Description: Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
paddidm.s 𝑆 = (PSubSp‘𝐾)
paddidm.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddidm ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)

Proof of Theorem paddidm
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝐾𝐵)
2 eqid 2622 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
3 paddidm.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
42, 3psubssat 35040 . . . . 5 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (Atoms‘𝐾))
5 eqid 2622 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 eqid 2622 . . . . . 6 (join‘𝐾) = (join‘𝐾)
7 paddidm.p . . . . . 6 + = (+𝑃𝐾)
85, 6, 2, 7elpadd 35085 . . . . 5 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
91, 4, 4, 8syl3anc 1326 . . . 4 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) ↔ ((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
10 pm1.2 535 . . . . . 6 ((𝑝𝑋𝑝𝑋) → 𝑝𝑋)
1110a1i 11 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝𝑋𝑝𝑋) → 𝑝𝑋))
125, 6, 2, 3psubspi 35033 . . . . . . 7 (((𝐾𝐵𝑋𝑆𝑝 ∈ (Atoms‘𝐾)) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋)
13123exp1 1283 . . . . . 6 (𝐾𝐵 → (𝑋𝑆 → (𝑝 ∈ (Atoms‘𝐾) → (∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → 𝑝𝑋))))
1413imp4b 613 . . . . 5 ((𝐾𝐵𝑋𝑆) → ((𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → 𝑝𝑋))
1511, 14jaod 395 . . . 4 ((𝐾𝐵𝑋𝑆) → (((𝑝𝑋𝑝𝑋) ∨ (𝑝 ∈ (Atoms‘𝐾) ∧ ∃𝑞𝑋𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → 𝑝𝑋))
169, 15sylbid 230 . . 3 ((𝐾𝐵𝑋𝑆) → (𝑝 ∈ (𝑋 + 𝑋) → 𝑝𝑋))
1716ssrdv 3609 . 2 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) ⊆ 𝑋)
182, 7sspadd1 35101 . . 3 ((𝐾𝐵𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑋 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑋))
191, 4, 4, 18syl3anc 1326 . 2 ((𝐾𝐵𝑋𝑆) → 𝑋 ⊆ (𝑋 + 𝑋))
2017, 19eqssd 3620 1 ((𝐾𝐵𝑋𝑆) → (𝑋 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wrex 2913  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Atomscatm 34550  PSubSpcpsubsp 34782  +𝑃cpadd 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-psubsp 34789  df-padd 35082
This theorem is referenced by:  paddclN  35128  paddss  35131  pmod1i  35134
  Copyright terms: Public domain W3C validator