MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phop Structured version   Visualization version   GIF version

Theorem phop 27673
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phop.2 𝐺 = ( +𝑣𝑈)
phop.4 𝑆 = ( ·𝑠OLD𝑈)
phop.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phop (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)

Proof of Theorem phop
StepHypRef Expression
1 phrel 27670 . . 3 Rel CPreHilOLD
2 1st2nd 7214 . . 3 ((Rel CPreHilOLD𝑈 ∈ CPreHilOLD) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 706 . 2 (𝑈 ∈ CPreHilOLD𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 phop.6 . . . . 5 𝑁 = (normCV𝑈)
54nmcvfval 27462 . . . 4 𝑁 = (2nd𝑈)
65opeq2i 4406 . . 3 ⟨(1st𝑈), 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
7 phnv 27669 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
8 eqid 2622 . . . . . 6 (1st𝑈) = (1st𝑈)
98nvvc 27470 . . . . 5 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
10 vcrel 27415 . . . . . . 7 Rel CVecOLD
11 1st2nd 7214 . . . . . . 7 ((Rel CVecOLD ∧ (1st𝑈) ∈ CVecOLD) → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
1210, 11mpan 706 . . . . . 6 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩)
13 phop.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
1413vafval 27458 . . . . . . 7 𝐺 = (1st ‘(1st𝑈))
15 phop.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
1615smfval 27460 . . . . . . 7 𝑆 = (2nd ‘(1st𝑈))
1714, 16opeq12i 4407 . . . . . 6 𝐺, 𝑆⟩ = ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩
1812, 17syl6eqr 2674 . . . . 5 ((1st𝑈) ∈ CVecOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
197, 9, 183syl 18 . . . 4 (𝑈 ∈ CPreHilOLD → (1st𝑈) = ⟨𝐺, 𝑆⟩)
2019opeq1d 4408 . . 3 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), 𝑁⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
216, 20syl5eqr 2670 . 2 (𝑈 ∈ CPreHilOLD → ⟨(1st𝑈), (2nd𝑈)⟩ = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
223, 21eqtrd 2656 1 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cop 4183  Rel wrel 5119  cfv 5888  1st c1st 7166  2nd c2nd 7167  CVecOLDcvc 27413  NrmCVeccnv 27439   +𝑣 cpv 27440   ·𝑠OLD cns 27442  normCVcnmcv 27445  CPreHilOLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-ph 27668
This theorem is referenced by:  phpar  27679
  Copyright terms: Public domain W3C validator