![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phop | Structured version Visualization version GIF version |
Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phop.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
phop.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
phop.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
phop | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phrel 27670 | . . 3 ⊢ Rel CPreHilOLD | |
2 | 1st2nd 7214 | . . 3 ⊢ ((Rel CPreHilOLD ∧ 𝑈 ∈ CPreHilOLD) → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) | |
3 | 1, 2 | mpan 706 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉) |
4 | phop.6 | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | 4 | nmcvfval 27462 | . . . 4 ⊢ 𝑁 = (2nd ‘𝑈) |
6 | 5 | opeq2i 4406 | . . 3 ⊢ 〈(1st ‘𝑈), 𝑁〉 = 〈(1st ‘𝑈), (2nd ‘𝑈)〉 |
7 | phnv 27669 | . . . . 5 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
8 | eqid 2622 | . . . . . 6 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
9 | 8 | nvvc 27470 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
10 | vcrel 27415 | . . . . . . 7 ⊢ Rel CVecOLD | |
11 | 1st2nd 7214 | . . . . . . 7 ⊢ ((Rel CVecOLD ∧ (1st ‘𝑈) ∈ CVecOLD) → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) | |
12 | 10, 11 | mpan 706 | . . . . . 6 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉) |
13 | phop.2 | . . . . . . . 8 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
14 | 13 | vafval 27458 | . . . . . . 7 ⊢ 𝐺 = (1st ‘(1st ‘𝑈)) |
15 | phop.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
16 | 15 | smfval 27460 | . . . . . . 7 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
17 | 14, 16 | opeq12i 4407 | . . . . . 6 ⊢ 〈𝐺, 𝑆〉 = 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 |
18 | 12, 17 | syl6eqr 2674 | . . . . 5 ⊢ ((1st ‘𝑈) ∈ CVecOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
19 | 7, 9, 18 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → (1st ‘𝑈) = 〈𝐺, 𝑆〉) |
20 | 19 | opeq1d 4408 | . . 3 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), 𝑁〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
21 | 6, 20 | syl5eqr 2670 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 〈(1st ‘𝑈), (2nd ‘𝑈)〉 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
22 | 3, 21 | eqtrd 2656 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 〈cop 4183 Rel wrel 5119 ‘cfv 5888 1st c1st 7166 2nd c2nd 7167 CVecOLDcvc 27413 NrmCVeccnv 27439 +𝑣 cpv 27440 ·𝑠OLD cns 27442 normCVcnmcv 27445 CPreHilOLDccphlo 27667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-1st 7168 df-2nd 7169 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-nmcv 27455 df-ph 27668 |
This theorem is referenced by: phpar 27679 |
Copyright terms: Public domain | W3C validator |