MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar Structured version   Visualization version   GIF version

Theorem phpar 27679
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phpar.1 𝑋 = (BaseSet‘𝑈)
phpar.2 𝐺 = ( +𝑣𝑈)
phpar.4 𝑆 = ( ·𝑠OLD𝑈)
phpar.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phpar ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem phpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phpar.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
21vafval 27458 . . . . . 6 𝐺 = (1st ‘(1st𝑈))
3 fvex 6201 . . . . . 6 (1st ‘(1st𝑈)) ∈ V
42, 3eqeltri 2697 . . . . 5 𝐺 ∈ V
5 phpar.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
65smfval 27460 . . . . . 6 𝑆 = (2nd ‘(1st𝑈))
7 fvex 6201 . . . . . 6 (2nd ‘(1st𝑈)) ∈ V
86, 7eqeltri 2697 . . . . 5 𝑆 ∈ V
9 phpar.6 . . . . . . 7 𝑁 = (normCV𝑈)
109nmcvfval 27462 . . . . . 6 𝑁 = (2nd𝑈)
11 fvex 6201 . . . . . 6 (2nd𝑈) ∈ V
1210, 11eqeltri 2697 . . . . 5 𝑁 ∈ V
134, 8, 123pm3.2i 1239 . . . 4 (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)
141, 5, 9phop 27673 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
1514eleq1d 2686 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD))
1615ibi 256 . . . 4 (𝑈 ∈ CPreHilOLD → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD)
17 phpar.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
1817, 1bafval 27459 . . . . . 6 𝑋 = ran 𝐺
1918isphg 27672 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
2019simplbda 654 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
2113, 16, 20sylancr 695 . . 3 (𝑈 ∈ CPreHilOLD → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
22213ad2ant1 1082 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
23 oveq1 6657 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
2423fveq2d 6195 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
2524oveq1d 6665 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝑦))↑2))
26 oveq1 6657 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝑦)))
2726fveq2d 6195 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝑦))))
2827oveq1d 6665 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2))
2925, 28oveq12d 6668 . . . . 5 (𝑥 = 𝐴 → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)))
30 fveq2 6191 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
3130oveq1d 6665 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁𝑥)↑2) = ((𝑁𝐴)↑2))
3231oveq1d 6665 . . . . . 6 (𝑥 = 𝐴 → (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))
3332oveq2d 6666 . . . . 5 (𝑥 = 𝐴 → (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))))
3429, 33eqeq12d 2637 . . . 4 (𝑥 = 𝐴 → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))))
35 oveq2 6658 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
3635fveq2d 6195 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
3736oveq1d 6665 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
38 oveq2 6658 . . . . . . . . 9 (𝑦 = 𝐵 → (-1𝑆𝑦) = (-1𝑆𝐵))
3938oveq2d 6666 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝐵)))
4039fveq2d 6195 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
4140oveq1d 6665 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
4237, 41oveq12d 6668 . . . . 5 (𝑦 = 𝐵 → (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
43 fveq2 6191 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
4443oveq1d 6665 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁𝑦)↑2) = ((𝑁𝐵)↑2))
4544oveq2d 6666 . . . . . 6 (𝑦 = 𝐵 → (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
4645oveq2d 6666 . . . . 5 (𝑦 = 𝐵 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
4742, 46eqeq12d 2637 . . . 4 (𝑦 = 𝐵 → ((((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
4834, 47rspc2v 3322 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
49483adant1 1079 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
5022, 49mpd 15 1 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  1c1 9937   + caddc 9939   · cmul 9941  -cneg 10267  2c2 11070  cexp 12860  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  normCVcnmcv 27445  CPreHilOLDccphlo 27667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-ph 27668
This theorem is referenced by:  ip0i  27680  hlpar  27753
  Copyright terms: Public domain W3C validator