![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pi1val | Structured version Visualization version GIF version |
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
pi1val.g | ⊢ 𝐺 = (𝐽 π1 𝑌) |
pi1val.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
pi1val.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
pi1val.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
Ref | Expression |
---|---|
pi1val | ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pi1val.g | . 2 ⊢ 𝐺 = (𝐽 π1 𝑌) | |
2 | df-pi1 22808 | . . . 4 ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)))) |
4 | simprl 794 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑗 = 𝐽) | |
5 | simprr 796 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
6 | 4, 5 | oveq12d 6668 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = (𝐽 Ω1 𝑌)) |
7 | pi1val.o | . . . . 5 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
8 | 6, 7 | syl6eqr 2674 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → (𝑗 Ω1 𝑦) = 𝑂) |
9 | 4 | fveq2d 6195 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ( ≃ph‘𝑗) = ( ≃ph‘𝐽)) |
10 | 8, 9 | oveq12d 6668 | . . 3 ⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑦 = 𝑌)) → ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)) = (𝑂 /s ( ≃ph‘𝐽))) |
11 | unieq 4444 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
12 | 11 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = ∪ 𝐽) |
13 | pi1val.1 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
14 | toponuni 20719 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
16 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → 𝑋 = ∪ 𝐽) |
17 | 12, 16 | eqtr4d 2659 | . . 3 ⊢ ((𝜑 ∧ 𝑗 = 𝐽) → ∪ 𝑗 = 𝑋) |
18 | topontop 20718 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 13, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | pi1val.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
21 | ovexd 6680 | . . 3 ⊢ (𝜑 → (𝑂 /s ( ≃ph‘𝐽)) ∈ V) | |
22 | 3, 10, 17, 19, 20, 21 | ovmpt2dx 6787 | . 2 ⊢ (𝜑 → (𝐽 π1 𝑌) = (𝑂 /s ( ≃ph‘𝐽))) |
23 | 1, 22 | syl5eq 2668 | 1 ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cuni 4436 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 /s cqus 16165 Topctop 20698 TopOnctopon 20715 ≃phcphtpc 22768 Ω1 comi 22801 π1 cpi1 22803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-topon 20716 df-pi1 22808 |
This theorem is referenced by: pi1bas 22838 pi1addf 22847 pi1addval 22848 pi1grplem 22849 |
Copyright terms: Public domain | W3C validator |