MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1val Structured version   Visualization version   Unicode version

Theorem pi1val 22837
Description: The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
pi1val.g  |-  G  =  ( J  pi1  Y )
pi1val.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1val.2  |-  ( ph  ->  Y  e.  X )
pi1val.o  |-  O  =  ( J  Om1  Y )
Assertion
Ref Expression
pi1val  |-  ( ph  ->  G  =  ( O 
/.s  (  ~=ph  `  J ) ) )

Proof of Theorem pi1val
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1val.g . 2  |-  G  =  ( J  pi1  Y )
2 df-pi1 22808 . . . 4  |-  pi1 
=  ( j  e. 
Top ,  y  e.  U. j  |->  ( ( j 
Om1  y ) 
/.s  (  ~=ph  `  j ) ) )
32a1i 11 . . 3  |-  ( ph  ->  pi1  =  ( j  e.  Top , 
y  e.  U. j  |->  ( ( j  Om1  y )  /.s  (  ~=ph  `  j ) ) ) )
4 simprl 794 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
j  =  J )
5 simprr 796 . . . . . 6  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
y  =  Y )
64, 5oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( j  Om1 
y )  =  ( J  Om1  Y ) )
7 pi1val.o . . . . 5  |-  O  =  ( J  Om1  Y )
86, 7syl6eqr 2674 . . . 4  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( j  Om1 
y )  =  O )
94fveq2d 6195 . . . 4  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
(  ~=ph  `  j )  =  (  ~=ph  `  J
) )
108, 9oveq12d 6668 . . 3  |-  ( (
ph  /\  ( j  =  J  /\  y  =  Y ) )  -> 
( ( j  Om1  y )  /.s  (  ~=ph  `  j ) )  =  ( O  /.s  (  ~=ph  `  J ) ) )
11 unieq 4444 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
1211adantl 482 . . . 4  |-  ( (
ph  /\  j  =  J )  ->  U. j  =  U. J )
13 pi1val.1 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
14 toponuni 20719 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1513, 14syl 17 . . . . 5  |-  ( ph  ->  X  =  U. J
)
1615adantr 481 . . . 4  |-  ( (
ph  /\  j  =  J )  ->  X  =  U. J )
1712, 16eqtr4d 2659 . . 3  |-  ( (
ph  /\  j  =  J )  ->  U. j  =  X )
18 topontop 20718 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1913, 18syl 17 . . 3  |-  ( ph  ->  J  e.  Top )
20 pi1val.2 . . 3  |-  ( ph  ->  Y  e.  X )
21 ovexd 6680 . . 3  |-  ( ph  ->  ( O  /.s  (  ~=ph  `  J ) )  e. 
_V )
223, 10, 17, 19, 20, 21ovmpt2dx 6787 . 2  |-  ( ph  ->  ( J  pi1  Y )  =  ( O  /.s  (  ~=ph  `  J ) ) )
231, 22syl5eq 2668 1  |-  ( ph  ->  G  =  ( O 
/.s  (  ~=ph  `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   U.cuni 4436   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    /.s cqus 16165   Topctop 20698  TopOnctopon 20715    ~=ph cphtpc 22768    Om1 comi 22801    pi1 cpi1 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-topon 20716  df-pi1 22808
This theorem is referenced by:  pi1bas  22838  pi1addf  22847  pi1addval  22848  pi1grplem  22849
  Copyright terms: Public domain W3C validator