MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm Structured version   Visualization version   GIF version

Theorem pjdm 20051
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))

Proof of Theorem pjdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6191 . . . . 5 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 6668 . . . 4 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
43eleq1d 2686 . . 3 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉𝑚 𝑉) ↔ (𝑇𝑃( 𝑇)) ∈ (𝑉𝑚 𝑉)))
5 pjfval.v . . . . 5 𝑉 = (Base‘𝑊)
6 fvex 6201 . . . . 5 (Base‘𝑊) ∈ V
75, 6eqeltri 2697 . . . 4 𝑉 ∈ V
87, 7elmap 7886 . . 3 ((𝑇𝑃( 𝑇)) ∈ (𝑉𝑚 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉)
94, 8syl6bb 276 . 2 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉𝑚 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉))
10 cnvin 5540 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉𝑚 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉𝑚 𝑉)))
11 cnvxp 5551 . . . . . . . 8 (V × (𝑉𝑚 𝑉)) = ((𝑉𝑚 𝑉) × V)
1211ineq2i 3811 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉𝑚 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉𝑚 𝑉) × V))
1310, 12eqtri 2644 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉𝑚 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉𝑚 𝑉) × V))
14 pjfval.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
15 pjfval.o . . . . . . . 8 = (ocv‘𝑊)
16 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
17 pjfval.k . . . . . . . 8 𝐾 = (proj‘𝑊)
185, 14, 15, 16, 17pjfval 20050 . . . . . . 7 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉𝑚 𝑉)))
1918cnveqi 5297 . . . . . 6 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉𝑚 𝑉)))
20 df-res 5126 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉𝑚 𝑉)) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉𝑚 𝑉) × V))
2113, 19, 203eqtr4i 2654 . . . . 5 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉𝑚 𝑉))
2221rneqi 5352 . . . 4 ran 𝐾 = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉𝑚 𝑉))
23 dfdm4 5316 . . . 4 dom 𝐾 = ran 𝐾
24 df-ima 5127 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉𝑚 𝑉)) = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉𝑚 𝑉))
2522, 23, 243eqtr4i 2654 . . 3 dom 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉𝑚 𝑉))
26 eqid 2622 . . . 4 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
2726mptpreima 5628 . . 3 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉𝑚 𝑉)) = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉𝑚 𝑉)}
2825, 27eqtri 2644 . 2 dom 𝐾 = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉𝑚 𝑉)}
299, 28elrab2 3366 1 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cin 3573  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Basecbs 15857  proj1cpj1 18050  LSubSpclss 18932  ocvcocv 20004  projcpj 20044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-pj 20047
This theorem is referenced by:  pjfval2  20053  pjdm2  20055  pjf  20057
  Copyright terms: Public domain W3C validator