MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjpm Structured version   Visualization version   GIF version

Theorem pjpm 20052
Description: The projection map is a partial function from subspaces of the pre-Hilbert space to total operators. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjpm.v 𝑉 = (Base‘𝑊)
pjpm.l 𝐿 = (LSubSp‘𝑊)
pjpm.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjpm 𝐾 ∈ ((𝑉𝑚 𝑉) ↑pm 𝐿)

Proof of Theorem pjpm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjpm.v . . . . 5 𝑉 = (Base‘𝑊)
2 pjpm.l . . . . 5 𝐿 = (LSubSp‘𝑊)
3 eqid 2622 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
4 eqid 2622 . . . . 5 (proj1𝑊) = (proj1𝑊)
5 pjpm.k . . . . 5 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjfval 20050 . . . 4 𝐾 = ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉𝑚 𝑉)))
7 inss1 3833 . . . 4 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉𝑚 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
86, 7eqsstri 3635 . . 3 𝐾 ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
9 funmpt 5926 . . 3 Fun (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
10 funss 5907 . . 3 (𝐾 ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) → (Fun (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) → Fun 𝐾))
118, 9, 10mp2 9 . 2 Fun 𝐾
12 eqid 2622 . . . . . 6 (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) = (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
13 ovexd 6680 . . . . . 6 (𝑥𝐿 → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ V)
1412, 13fmpti 6383 . . . . 5 (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))):𝐿⟶V
15 fssxp 6060 . . . . 5 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))):𝐿⟶V → (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ⊆ (𝐿 × V))
16 ssrin 3838 . . . . 5 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ⊆ (𝐿 × V) → ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉𝑚 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉𝑚 𝑉))))
1714, 15, 16mp2b 10 . . . 4 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉𝑚 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉𝑚 𝑉)))
186, 17eqsstri 3635 . . 3 𝐾 ⊆ ((𝐿 × V) ∩ (V × (𝑉𝑚 𝑉)))
19 inxp 5254 . . . 4 ((𝐿 × V) ∩ (V × (𝑉𝑚 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉𝑚 𝑉)))
20 inv1 3970 . . . . 5 (𝐿 ∩ V) = 𝐿
21 incom 3805 . . . . . 6 (V ∩ (𝑉𝑚 𝑉)) = ((𝑉𝑚 𝑉) ∩ V)
22 inv1 3970 . . . . . 6 ((𝑉𝑚 𝑉) ∩ V) = (𝑉𝑚 𝑉)
2321, 22eqtri 2644 . . . . 5 (V ∩ (𝑉𝑚 𝑉)) = (𝑉𝑚 𝑉)
2420, 23xpeq12i 5137 . . . 4 ((𝐿 ∩ V) × (V ∩ (𝑉𝑚 𝑉))) = (𝐿 × (𝑉𝑚 𝑉))
2519, 24eqtri 2644 . . 3 ((𝐿 × V) ∩ (V × (𝑉𝑚 𝑉))) = (𝐿 × (𝑉𝑚 𝑉))
2618, 25sseqtri 3637 . 2 𝐾 ⊆ (𝐿 × (𝑉𝑚 𝑉))
27 ovex 6678 . . 3 (𝑉𝑚 𝑉) ∈ V
28 fvex 6201 . . . 4 (LSubSp‘𝑊) ∈ V
292, 28eqeltri 2697 . . 3 𝐿 ∈ V
3027, 29elpm 7888 . 2 (𝐾 ∈ ((𝑉𝑚 𝑉) ↑pm 𝐿) ↔ (Fun 𝐾𝐾 ⊆ (𝐿 × (𝑉𝑚 𝑉))))
3111, 26, 30mpbir2an 955 1 𝐾 ∈ ((𝑉𝑚 𝑉) ↑pm 𝐿)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  cmpt 4729   × cxp 5112  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  pm cpm 7858  Basecbs 15857  proj1cpj1 18050  LSubSpclss 18932  ocvcocv 20004  projcpj 20044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-pj 20047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator