![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltirr | Structured version Visualization version GIF version |
Description: The less-than relation is not reflexive. (pssirr 3707 analog.) (Contributed by NM, 7-Feb-2012.) |
Ref | Expression |
---|---|
pltne.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltirr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . 2 ⊢ 𝑋 = 𝑋 | |
2 | pltne.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | 2 | pltne 16962 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
4 | 3 | 3anidm23 1385 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 < 𝑋 → 𝑋 ≠ 𝑋)) |
5 | 4 | necon2bd 2810 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑋 → ¬ 𝑋 < 𝑋)) |
6 | 1, 5 | mpi 20 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 ltcplt 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-plt 16958 |
This theorem is referenced by: pospo 16973 atnlt 34600 llnnlt 34809 lplnnlt 34851 lvolnltN 34904 |
Copyright terms: Public domain | W3C validator |