Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  posrasymb Structured version   Visualization version   GIF version

Theorem posrasymb 29657
Description: A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
posrasymb.b 𝐵 = (Base‘𝐾)
posrasymb.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
posrasymb ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))

Proof of Theorem posrasymb
StepHypRef Expression
1 posrasymb.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21breqi 4659 . . . 4 (𝑋 𝑌𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌)
3 simp2 1062 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
4 simp3 1063 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
5 brxp 5147 . . . . . 6 (𝑋(𝐵 × 𝐵)𝑌 ↔ (𝑋𝐵𝑌𝐵))
63, 4, 5sylanbrc 698 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑋(𝐵 × 𝐵)𝑌)
7 brin 4704 . . . . . 6 (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋(𝐵 × 𝐵)𝑌))
87rbaib 947 . . . . 5 (𝑋(𝐵 × 𝐵)𝑌 → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
96, 8syl 17 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋((le‘𝐾) ∩ (𝐵 × 𝐵))𝑌𝑋(le‘𝐾)𝑌))
102, 9syl5bb 272 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋(le‘𝐾)𝑌))
111breqi 4659 . . . 4 (𝑌 𝑋𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋)
12 brxp 5147 . . . . . 6 (𝑌(𝐵 × 𝐵)𝑋 ↔ (𝑌𝐵𝑋𝐵))
134, 3, 12sylanbrc 698 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → 𝑌(𝐵 × 𝐵)𝑋)
14 brin 4704 . . . . . 6 (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋 ↔ (𝑌(le‘𝐾)𝑋𝑌(𝐵 × 𝐵)𝑋))
1514rbaib 947 . . . . 5 (𝑌(𝐵 × 𝐵)𝑋 → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1613, 15syl 17 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌((le‘𝐾) ∩ (𝐵 × 𝐵))𝑋𝑌(le‘𝐾)𝑋))
1711, 16syl5bb 272 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋𝑌(le‘𝐾)𝑋))
1810, 17anbi12d 747 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ (𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋)))
19 posrasymb.b . . 3 𝐵 = (Base‘𝐾)
20 eqid 2622 . . 3 (le‘𝐾) = (le‘𝐾)
2119, 20posasymb 16952 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
2218, 21bitrd 268 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cin 3573   class class class wbr 4653   × cxp 5112  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-iota 5851  df-fv 5896  df-preset 16928  df-poset 16946
This theorem is referenced by:  ordtconnlem1  29970
  Copyright terms: Public domain W3C validator