![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brin | Structured version Visualization version GIF version |
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
Ref | Expression |
---|---|
brin | ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3796 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 4654 | . 2 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∩ 𝑆)) | |
3 | df-br 4654 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 4654 | . . 3 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 3, 4 | anbi12i 733 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
6 | 1, 2, 5 | 3bitr4i 292 | 1 ⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∩ cin 3573 〈cop 4183 class class class wbr 4653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-br 4654 |
This theorem is referenced by: brinxp2 5180 trin2 5519 poirr2 5520 tpostpos 7372 erinxp 7821 sbthcl 8082 infxpenlem 8836 fpwwe2lem12 9463 fpwwe2 9465 isinv 16420 isffth2 16576 ffthf1o 16579 ffthoppc 16584 ffthres2c 16600 isunit 18657 opsrtoslem2 19485 posrasymb 29657 trleile 29666 dfpo2 31645 brtxp 31987 idsset 31997 dfon3 31999 elfix 32010 dffix2 32012 brcap 32047 funpartlem 32049 trer 32310 fneval 32347 brinxp2ALTV 34034 |
Copyright terms: Public domain | W3C validator |