Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem4 Structured version   Visualization version   GIF version

Theorem frrlem4 31783
Description: Lemma for founded recursion. Properties of the restriction of an acceptable function to the domain of another acceptable function. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypothesis
Ref Expression
frrlem4.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
Assertion
Ref Expression
frrlem4 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑓,𝑔   𝐴,,𝑥,𝑦,𝑎   𝐵,𝑎   𝑓,,𝑥,𝑦   𝐺,𝑎,𝑓,𝑔   ,𝐺,𝑥,𝑦   𝑥,𝑔,𝑦   𝑅,𝑎,𝑓,𝑔   𝑅,,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem frrlem4
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frrlem4.1 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
21frrlem2 31781 . . . . 5 (𝑔𝐵 → Fun 𝑔)
3 funfn 5918 . . . . 5 (Fun 𝑔𝑔 Fn dom 𝑔)
42, 3sylib 208 . . . 4 (𝑔𝐵𝑔 Fn dom 𝑔)
5 fnresin1 6005 . . . 4 (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
64, 5syl 17 . . 3 (𝑔𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
76adantr 481 . 2 ((𝑔𝐵𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
8 inss1 3833 . . . . . . . 8 (dom 𝑔 ∩ dom ) ⊆ dom 𝑔
98sseli 3599 . . . . . . 7 (𝑎 ∈ (dom 𝑔 ∩ dom ) → 𝑎 ∈ dom 𝑔)
101frrlem1 31780 . . . . . . . . 9 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))}
1110abeq2i 2735 . . . . . . . 8 (𝑔𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))))
12 fndm 5990 . . . . . . . . . 10 (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏)
13 rsp 2929 . . . . . . . . . . . 12 (∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎𝑏 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
14133ad2ant3 1084 . . . . . . . . . . 11 ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎𝑏 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
15 eleq2 2690 . . . . . . . . . . . 12 (dom 𝑔 = 𝑏 → (𝑎 ∈ dom 𝑔𝑎𝑏))
1615imbi1d 331 . . . . . . . . . . 11 (dom 𝑔 = 𝑏 → ((𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ↔ (𝑎𝑏 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))))
1714, 16syl5ibrcom 237 . . . . . . . . . 10 ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (dom 𝑔 = 𝑏 → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))))
1812, 17mpan9 486 . . . . . . . . 9 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1918exlimiv 1858 . . . . . . . 8 (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
2011, 19sylbi 207 . . . . . . 7 (𝑔𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
219, 20syl5 34 . . . . . 6 (𝑔𝐵 → (𝑎 ∈ (dom 𝑔 ∩ dom ) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
2221imp 445 . . . . 5 ((𝑔𝐵𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
2322adantlr 751 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
24 fvres 6207 . . . . 5 (𝑎 ∈ (dom 𝑔 ∩ dom ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
2524adantl 482 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
26 resres 5409 . . . . . 6 ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))
27 predss 5687 . . . . . . . . 9 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom )
28 sseqin2 3817 . . . . . . . . 9 (Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))
2927, 28mpbi 220 . . . . . . . 8 ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)
301frrlem1 31780 . . . . . . . . . . . 12 𝐵 = { ∣ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))}
3130abeq2i 2735 . . . . . . . . . . 11 (𝐵 ↔ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))))
32 eeanv 2182 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))))
33 simpl1 1064 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑏𝐴)
34 ssinss1 3841 . . . . . . . . . . . . . . . . 17 (𝑏𝐴 → (𝑏𝑐) ⊆ 𝐴)
3533, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑏𝑐) ⊆ 𝐴)
36 simpl2 1065 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)
37 simpr2 1068 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
38 nfra1 2941 . . . . . . . . . . . . . . . . . . 19 𝑎𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏
39 nfra1 2941 . . . . . . . . . . . . . . . . . . 19 𝑎𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐
4038, 39nfan 1828 . . . . . . . . . . . . . . . . . 18 𝑎(∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
41 inss1 3833 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏𝑐) ⊆ 𝑏
4241sseli 3599 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑏)
43 rsp 2929 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
4442, 43syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
45 inss2 3834 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏𝑐) ⊆ 𝑐
4645sseli 3599 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑐)
47 rsp 2929 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4846, 47syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4944, 48anim12d 586 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (𝑏𝑐) → ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)))
50 ssin 3835 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5150biimpi 206 . . . . . . . . . . . . . . . . . . 19 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5249, 51syl6com 37 . . . . . . . . . . . . . . . . . 18 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5340, 52ralrimi 2957 . . . . . . . . . . . . . . . . 17 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5436, 37, 53syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
55 fndm 5990 . . . . . . . . . . . . . . . . . 18 ( Fn 𝑐 → dom = 𝑐)
56 ineq12 3809 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (dom 𝑔 ∩ dom ) = (𝑏𝑐))
5756sseq1d 3632 . . . . . . . . . . . . . . . . . . 19 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ↔ (𝑏𝑐) ⊆ 𝐴))
58 sseq2 3627 . . . . . . . . . . . . . . . . . . . . 21 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5958raleqbi1dv 3146 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
6056, 59syl 17 . . . . . . . . . . . . . . . . . . 19 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
6157, 60anbi12d 747 . . . . . . . . . . . . . . . . . 18 ((dom 𝑔 = 𝑏 ∧ dom = 𝑐) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6212, 55, 61syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑏 Fn 𝑐) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6362biimprcd 240 . . . . . . . . . . . . . . . 16 (((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)) → ((𝑔 Fn 𝑏 Fn 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))))
6435, 54, 63syl2anc 693 . . . . . . . . . . . . . . 15 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((𝑔 Fn 𝑏 Fn 𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))))
6564impcom 446 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6665an4s 869 . . . . . . . . . . . . 13 (((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6766exlimivv 1860 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6832, 67sylbir 225 . . . . . . . . . . 11 ((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎𝑐 (𝑎) = (𝑎𝐺( ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6911, 31, 68syl2anb 496 . . . . . . . . . 10 ((𝑔𝐵𝐵) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
7069adantr 481 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
71 simpr 477 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → 𝑎 ∈ (dom 𝑔 ∩ dom ))
72 preddowncl 5707 . . . . . . . . 9 (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) → (𝑎 ∈ (dom 𝑔 ∩ dom ) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)))
7370, 71, 72sylc 65 . . . . . . . 8 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))
7429, 73syl5eq 2668 . . . . . . 7 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎))
7574reseq2d 5396 . . . . . 6 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7626, 75syl5eq 2668 . . . . 5 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7776oveq2d 6666 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
7823, 25, 773eqtr4d 2666 . . 3 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
7978ralrimiva 2966 . 2 ((𝑔𝐵𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
807, 79jca 554 1 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  cin 3573  wss 3574  dom cdm 5114  cres 5116  Predcpred 5679  Fun wfun 5882   Fn wfn 5883  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ov 6653
This theorem is referenced by:  frrlem5  31784
  Copyright terms: Public domain W3C validator