MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem4 Structured version   Visualization version   GIF version

Theorem wfrlem4 7418
Description: Lemma for well-founded recursion. Properties of the restriction of an acceptable function to the domain of another one. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem4.1 𝑅 We 𝐴
wfrlem4.2 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
wfrlem4 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
Distinct variable groups:   𝐴,𝑎,𝑓,𝑔,,𝑥,𝑦   𝐵,𝑎   𝐹,𝑎,𝑓,𝑔,,𝑥,𝑦   𝑅,𝑎,𝑓,𝑔,,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓,𝑔,)

Proof of Theorem wfrlem4
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem4.2 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
21wfrlem2 7415 . . . . 5 (𝑔𝐵 → Fun 𝑔)
3 funfn 5918 . . . . 5 (Fun 𝑔𝑔 Fn dom 𝑔)
42, 3sylib 208 . . . 4 (𝑔𝐵𝑔 Fn dom 𝑔)
5 fnresin1 6005 . . . 4 (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
64, 5syl 17 . . 3 (𝑔𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
76adantr 481 . 2 ((𝑔𝐵𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ))
8 inss1 3833 . . . . . . . 8 (dom 𝑔 ∩ dom ) ⊆ dom 𝑔
98sseli 3599 . . . . . . 7 (𝑎 ∈ (dom 𝑔 ∩ dom ) → 𝑎 ∈ dom 𝑔)
101wfrlem1 7414 . . . . . . . . 9 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))}
1110abeq2i 2735 . . . . . . . 8 (𝑔𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
12 fndm 5990 . . . . . . . . . . . . 13 (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏)
1312raleqdv 3144 . . . . . . . . . . . 12 (𝑔 Fn 𝑏 → (∀𝑎 ∈ dom 𝑔(𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ↔ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1413biimpar 502 . . . . . . . . . . 11 ((𝑔 Fn 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ dom 𝑔(𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
15 rsp 2929 . . . . . . . . . . 11 (∀𝑎 ∈ dom 𝑔(𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1614, 15syl 17 . . . . . . . . . 10 ((𝑔 Fn 𝑏 ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
17163adant2 1080 . . . . . . . . 9 ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1817exlimiv 1858 . . . . . . . 8 (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
1911, 18sylbi 207 . . . . . . 7 (𝑔𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
209, 19syl5 34 . . . . . 6 (𝑔𝐵 → (𝑎 ∈ (dom 𝑔 ∩ dom ) → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))
2120imp 445 . . . . 5 ((𝑔𝐵𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
2221adantlr 751 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
23 fvres 6207 . . . . 5 (𝑎 ∈ (dom 𝑔 ∩ dom ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
2423adantl 482 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑔𝑎))
25 resres 5409 . . . . . 6 ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))
26 predss 5687 . . . . . . . . 9 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom )
27 sseqin2 3817 . . . . . . . . 9 (Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))
2826, 27mpbi 220 . . . . . . . 8 ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)
291wfrlem1 7414 . . . . . . . . . . . 12 𝐵 = { ∣ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))}
3029abeq2i 2735 . . . . . . . . . . 11 (𝐵 ↔ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎)))))
31 3an6 1409 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))))
32312exbii 1775 . . . . . . . . . . . . 13 (∃𝑏𝑐((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))))
33 eeanv 2182 . . . . . . . . . . . . 13 (∃𝑏𝑐((𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))))
3432, 33bitri 264 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))))
35 ssinss1 3841 . . . . . . . . . . . . . . . . . 18 (𝑏𝐴 → (𝑏𝑐) ⊆ 𝐴)
3635ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → (𝑏𝑐) ⊆ 𝐴)
37 nfra1 2941 . . . . . . . . . . . . . . . . . . . 20 𝑎𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏
38 nfra1 2941 . . . . . . . . . . . . . . . . . . . 20 𝑎𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐
3937, 38nfan 1828 . . . . . . . . . . . . . . . . . . 19 𝑎(∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)
40 inss1 3833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏𝑐) ⊆ 𝑏
4140sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑏)
42 rsp 2929 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
4341, 42syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏))
44 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏𝑐) ⊆ 𝑐
4544sseli 3599 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 ∈ (𝑏𝑐) → 𝑎𝑐)
46 rsp 2929 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4745, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (𝑏𝑐) → (∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))
4843, 47anim12d 586 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (𝑏𝑐) → ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)))
49 ssin 3835 . . . . . . . . . . . . . . . . . . . . 21 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5049biimpi 206 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5148, 50syl6com 37 . . . . . . . . . . . . . . . . . . 19 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5239, 51ralrimi 2957 . . . . . . . . . . . . . . . . . 18 ((∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5352ad2ant2l 782 . . . . . . . . . . . . . . . . 17 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))
5436, 53jca 554 . . . . . . . . . . . . . . . 16 (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
55 fndm 5990 . . . . . . . . . . . . . . . . . 18 ( Fn 𝑐 → dom = 𝑐)
5612, 55ineqan12d 3816 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑏 Fn 𝑐) → (dom 𝑔 ∩ dom ) = (𝑏𝑐))
57 sseq1 3626 . . . . . . . . . . . . . . . . . . 19 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ↔ (𝑏𝑐) ⊆ 𝐴))
58 sseq2 3627 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
5958raleqbi1dv 3146 . . . . . . . . . . . . . . . . . . 19 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ) ↔ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))
6057, 59anbi12d 747 . . . . . . . . . . . . . . . . . 18 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) ↔ ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐))))
6160imbi2d 330 . . . . . . . . . . . . . . . . 17 ((dom 𝑔 ∩ dom ) = (𝑏𝑐) → ((((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))) ↔ (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))))
6256, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝑏 Fn 𝑐) → ((((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))) ↔ (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏𝑐)))))
6354, 62mpbiri 248 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝑏 Fn 𝑐) → (((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ))))
6463imp 445 . . . . . . . . . . . . . 14 (((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
65643adant3 1081 . . . . . . . . . . . . 13 (((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6665exlimivv 1860 . . . . . . . . . . . 12 (∃𝑏𝑐((𝑔 Fn 𝑏 Fn 𝑐) ∧ ((𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6734, 66sylbir 225 . . . . . . . . . . 11 ((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑎𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎𝑏 (𝑔𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐( Fn 𝑐 ∧ (𝑐𝐴 ∧ ∀𝑎𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎𝑐 (𝑎) = (𝐹‘( ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6811, 30, 67syl2anb 496 . . . . . . . . . 10 ((𝑔𝐵𝐵) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
6968adantr 481 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )))
70 simpr 477 . . . . . . . . 9 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → 𝑎 ∈ (dom 𝑔 ∩ dom ))
71 preddowncl 5707 . . . . . . . . 9 (((dom 𝑔 ∩ dom ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom )) → (𝑎 ∈ (dom 𝑔 ∩ dom ) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)))
7269, 70, 71sylc 65 . . . . . . . 8 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))
7328, 72syl5eq 2668 . . . . . . 7 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎))
7473reseq2d 5396 . . . . . 6 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝑔 ↾ ((dom 𝑔 ∩ dom ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7525, 74syl5eq 2668 . . . . 5 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))
7675fveq2d 6195 . . . 4 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))
7722, 24, 763eqtr4d 2666 . . 3 (((𝑔𝐵𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom )) → ((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
7877ralrimiva 2966 . 2 ((𝑔𝐵𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))
797, 78jca 554 1 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  cin 3573  wss 3574   We wwe 5072  dom cdm 5114  cres 5116  Predcpred 5679  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  wfrlem5  7419
  Copyright terms: Public domain W3C validator