Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frr3g Structured version   Visualization version   GIF version

Theorem frr3g 31779
Description: Functions defined by founded recursion are identical up to relation, domain, and characteristic function. General version of frr3. (Contributed by Scott Fenton, 10-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frr3g (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem frr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ra4v 3524 . . . . . . . . . . 11 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2 r19.26 3064 . . . . . . . . . . . . . 14 (∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))
32anbi2i 730 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))))
4 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
5 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧𝑦 = 𝑧)
6 predeq3 5684 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
76reseq2d 5396 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85, 7oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
94, 8eqeq12d 2637 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
10 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
116reseq2d 5396 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
125, 11oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1310, 12eqeq12d 2637 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
149, 13anbi12d 747 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))))
1514rspcva 3307 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
16 eqtr3 2643 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹𝑧))
1716eqcomd 2628 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
18 eqtr3 2643 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧))
1918ex 450 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → ((𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2120expimpd 629 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) → (((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧)))
22 predss 5687 . . . . . . . . . . . . . . . . . . . . . . 23 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
23 fvreseq 6319 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2422, 23mpan2 707 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2524biimpar 502 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2625oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
2726eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
2821, 27syl11 33 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧)))
2928expd 452 . . . . . . . . . . . . . . . . 17 (((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3015, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3130ex 450 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3231com23 86 . . . . . . . . . . . . . 14 (𝑧𝐴 → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3332impd 447 . . . . . . . . . . . . 13 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
343, 33syl5bir 233 . . . . . . . . . . . 12 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3534a2d 29 . . . . . . . . . . 11 (𝑧𝐴 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
361, 35syl5 34 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
37 fveq2 6191 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
38 fveq2 6191 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
3937, 38eqeq12d 2637 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
4039imbi2d 330 . . . . . . . . . 10 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
4136, 40frins2g 31746 . . . . . . . . 9 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
42 rsp 2929 . . . . . . . . 9 (∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) → (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
4341, 42syl 17 . . . . . . . 8 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
4443com3r 87 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧))))
4544an4s 869 . . . . . 6 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧))))
4645com12 32 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧))))
47463impib 1262 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧)))
4847ralrimiv 2965 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
49 eqid 2622 . . 3 𝐴 = 𝐴
5048, 49jctil 560 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
51 eqfnfv2 6312 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5251ad2ant2r 783 . . 3 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
53523adant1 1079 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5450, 53mpbird 247 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574   Fr wfr 5070   Se wse 5071  cres 5116  Predcpred 5679   Fn wfn 5883  cfv 5888  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  frrlem5  31784
  Copyright terms: Public domain W3C validator