Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  projf1o Structured version   Visualization version   GIF version

Theorem projf1o 39386
Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
projf1o.1 (𝜑𝐴𝑉)
projf1o.2 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
Assertion
Ref Expression
projf1o (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem projf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 projf1o.1 . . . . . . . . 9 (𝜑𝐴𝑉)
2 snidg 4206 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
31, 2syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
43adantr 481 . . . . . . 7 ((𝜑𝑦𝐵) → 𝐴 ∈ {𝐴})
5 simpr 477 . . . . . . 7 ((𝜑𝑦𝐵) → 𝑦𝐵)
6 opelxpi 5148 . . . . . . 7 ((𝐴 ∈ {𝐴} ∧ 𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
74, 5, 6syl2anc 693 . . . . . 6 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
8 projf1o.2 . . . . . . 7 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
9 opeq2 4403 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝑦⟩)
109cbvmptv 4750 . . . . . . 7 (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩) = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
118, 10eqtri 2644 . . . . . 6 𝐹 = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
127, 11fmptd 6385 . . . . 5 (𝜑𝐹:𝐵⟶({𝐴} × 𝐵))
13 simpl1 1064 . . . . . . . . 9 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝜑)
147elexd 3214 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ V)
1511fvmpt2 6291 . . . . . . . . . . . . . 14 ((𝑦𝐵 ∧ ⟨𝐴, 𝑦⟩ ∈ V) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
165, 14, 15syl2anc 693 . . . . . . . . . . . . 13 ((𝜑𝑦𝐵) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
1716eqcomd 2628 . . . . . . . . . . . 12 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
18173adant3 1081 . . . . . . . . . . 11 ((𝜑𝑦𝐵𝑧𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
1918adantr 481 . . . . . . . . . 10 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
20 simpr 477 . . . . . . . . . 10 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑦) = (𝐹𝑧))
2111a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝐹 = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩))
22 opeq2 4403 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
2322adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑧𝐵) ∧ 𝑦 = 𝑧) → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
24 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑧𝐵)
25 opex 4932 . . . . . . . . . . . . . 14 𝐴, 𝑧⟩ ∈ V
2625a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → ⟨𝐴, 𝑧⟩ ∈ V)
2721, 23, 24, 26fvmptd 6288 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
28273adant2 1080 . . . . . . . . . . 11 ((𝜑𝑦𝐵𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2928adantr 481 . . . . . . . . . 10 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
3019, 20, 293eqtrd 2660 . . . . . . . . 9 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
31 simpr 477 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
32 vex 3203 . . . . . . . . . . . . . 14 𝑧 ∈ V
3332a1i 11 . . . . . . . . . . . . 13 (𝜑𝑧 ∈ V)
34 opthg2 4948 . . . . . . . . . . . . 13 ((𝐴𝑉𝑧 ∈ V) → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
351, 33, 34syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
3635adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
3731, 36mpbid 222 . . . . . . . . . 10 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → (𝐴 = 𝐴𝑦 = 𝑧))
3837simprd 479 . . . . . . . . 9 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → 𝑦 = 𝑧)
3913, 30, 38syl2anc 693 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝑦 = 𝑧)
4039ex 450 . . . . . . 7 ((𝜑𝑦𝐵𝑧𝐵) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
41403expb 1266 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4241ralrimivva 2971 . . . . 5 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4312, 42jca 554 . . . 4 (𝜑 → (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
44 dff13 6512 . . . 4 (𝐹:𝐵1-1→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4543, 44sylibr 224 . . 3 (𝜑𝐹:𝐵1-1→({𝐴} × 𝐵))
46 simpr 477 . . . . . . . 8 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → 𝑧 ∈ ({𝐴} × 𝐵))
47 elsnxp 5677 . . . . . . . . . 10 (𝐴𝑉 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
481, 47syl 17 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
4948adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
5046, 49mpbid 222 . . . . . . 7 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩)
5116adantr 481 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
52 id 22 . . . . . . . . . . . . 13 (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = ⟨𝐴, 𝑦⟩)
5352eqcomd 2628 . . . . . . . . . . . 12 (𝑧 = ⟨𝐴, 𝑦⟩ → ⟨𝐴, 𝑦⟩ = 𝑧)
5453adantl 482 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → ⟨𝐴, 𝑦⟩ = 𝑧)
5551, 54eqtr2d 2657 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → 𝑧 = (𝐹𝑦))
5655ex 450 . . . . . . . . 9 ((𝜑𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
5756adantlr 751 . . . . . . . 8 (((𝜑𝑧 ∈ ({𝐴} × 𝐵)) ∧ 𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
5857reximdva 3017 . . . . . . 7 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → (∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩ → ∃𝑦𝐵 𝑧 = (𝐹𝑦)))
5950, 58mpd 15 . . . . . 6 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = (𝐹𝑦))
6059ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦))
6112, 60jca 554 . . . 4 (𝜑 → (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦)))
62 dffo3 6374 . . . 4 (𝐹:𝐵onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦)))
6361, 62sylibr 224 . . 3 (𝜑𝐹:𝐵onto→({𝐴} × 𝐵))
6445, 63jca 554 . 2 (𝜑 → (𝐹:𝐵1-1→({𝐴} × 𝐵) ∧ 𝐹:𝐵onto→({𝐴} × 𝐵)))
65 df-f1o 5895 . 2 (𝐹:𝐵1-1-onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵1-1→({𝐴} × 𝐵) ∧ 𝐹:𝐵onto→({𝐴} × 𝐵)))
6664, 65sylibr 224 1 (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  {csn 4177  cop 4183  cmpt 4729   × cxp 5112  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  sge0xp  40646
  Copyright terms: Public domain W3C validator