Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  projf1o Structured version   Visualization version   Unicode version

Theorem projf1o 39386
Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
projf1o.1  |-  ( ph  ->  A  e.  V )
projf1o.2  |-  F  =  ( x  e.  B  |-> 
<. A ,  x >. )
Assertion
Ref Expression
projf1o  |-  ( ph  ->  F : B -1-1-onto-> ( { A }  X.  B
) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    F( x)    V( x)

Proof of Theorem projf1o
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 projf1o.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
2 snidg 4206 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  { A } )
31, 2syl 17 . . . . . . . 8  |-  ( ph  ->  A  e.  { A } )
43adantr 481 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  A  e.  { A } )
5 simpr 477 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
6 opelxpi 5148 . . . . . . 7  |-  ( ( A  e.  { A }  /\  y  e.  B
)  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
74, 5, 6syl2anc 693 . . . . . 6  |-  ( (
ph  /\  y  e.  B )  ->  <. A , 
y >.  e.  ( { A }  X.  B
) )
8 projf1o.2 . . . . . . 7  |-  F  =  ( x  e.  B  |-> 
<. A ,  x >. )
9 opeq2 4403 . . . . . . . 8  |-  ( x  =  y  ->  <. A ,  x >.  =  <. A , 
y >. )
109cbvmptv 4750 . . . . . . 7  |-  ( x  e.  B  |->  <. A ,  x >. )  =  ( y  e.  B  |->  <. A ,  y >. )
118, 10eqtri 2644 . . . . . 6  |-  F  =  ( y  e.  B  |-> 
<. A ,  y >.
)
127, 11fmptd 6385 . . . . 5  |-  ( ph  ->  F : B --> ( { A }  X.  B
) )
13 simpl1 1064 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  B  /\  z  e.  B )  /\  ( F `  y )  =  ( F `  z ) )  ->  ph )
147elexd 3214 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  B )  ->  <. A , 
y >.  e.  _V )
1511fvmpt2 6291 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  <. A ,  y >.  e. 
_V )  ->  ( F `  y )  =  <. A ,  y
>. )
165, 14, 15syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  B )  ->  ( F `  y )  =  <. A ,  y
>. )
1716eqcomd 2628 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  B )  ->  <. A , 
y >.  =  ( F `
 y ) )
18173adant3 1081 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  B  /\  z  e.  B
)  ->  <. A , 
y >.  =  ( F `
 y ) )
1918adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B  /\  z  e.  B )  /\  ( F `  y )  =  ( F `  z ) )  ->  <. A ,  y >.  =  ( F `  y ) )
20 simpr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B  /\  z  e.  B )  /\  ( F `  y )  =  ( F `  z ) )  -> 
( F `  y
)  =  ( F `
 z ) )
2111a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  F  =  ( y  e.  B  |->  <. A ,  y
>. ) )
22 opeq2 4403 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  <. A , 
y >.  =  <. A , 
z >. )
2322adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  B )  /\  y  =  z )  ->  <. A ,  y >.  =  <. A ,  z
>. )
24 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  z  e.  B )
25 opex 4932 . . . . . . . . . . . . . 14  |-  <. A , 
z >.  e.  _V
2625a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  B )  ->  <. A , 
z >.  e.  _V )
2721, 23, 24, 26fvmptd 6288 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  =  <. A ,  z
>. )
28273adant2 1080 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  B  /\  z  e.  B
)  ->  ( F `  z )  =  <. A ,  z >. )
2928adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B  /\  z  e.  B )  /\  ( F `  y )  =  ( F `  z ) )  -> 
( F `  z
)  =  <. A , 
z >. )
3019, 20, 293eqtrd 2660 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  B  /\  z  e.  B )  /\  ( F `  y )  =  ( F `  z ) )  ->  <. A ,  y >.  =  <. A ,  z
>. )
31 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  <. A , 
y >.  =  <. A , 
z >. )  ->  <. A , 
y >.  =  <. A , 
z >. )
32 vex 3203 . . . . . . . . . . . . . 14  |-  z  e. 
_V
3332a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  z  e.  _V )
34 opthg2 4948 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  z  e.  _V )  ->  ( <. A ,  y
>.  =  <. A , 
z >. 
<->  ( A  =  A  /\  y  =  z ) ) )
351, 33, 34syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. A ,  y
>.  =  <. A , 
z >. 
<->  ( A  =  A  /\  y  =  z ) ) )
3635adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  <. A , 
y >.  =  <. A , 
z >. )  ->  ( <. A ,  y >.  =  <. A ,  z
>. 
<->  ( A  =  A  /\  y  =  z ) ) )
3731, 36mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  <. A , 
y >.  =  <. A , 
z >. )  ->  ( A  =  A  /\  y  =  z )
)
3837simprd 479 . . . . . . . . 9  |-  ( (
ph  /\  <. A , 
y >.  =  <. A , 
z >. )  ->  y  =  z )
3913, 30, 38syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  B  /\  z  e.  B )  /\  ( F `  y )  =  ( F `  z ) )  -> 
y  =  z )
4039ex 450 . . . . . . 7  |-  ( (
ph  /\  y  e.  B  /\  z  e.  B
)  ->  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
41403expb 1266 . . . . . 6  |-  ( (
ph  /\  ( y  e.  B  /\  z  e.  B ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
4241ralrimivva 2971 . . . . 5  |-  ( ph  ->  A. y  e.  B  A. z  e.  B  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
4312, 42jca 554 . . . 4  |-  ( ph  ->  ( F : B --> ( { A }  X.  B )  /\  A. y  e.  B  A. z  e.  B  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
44 dff13 6512 . . . 4  |-  ( F : B -1-1-> ( { A }  X.  B
)  <->  ( F : B
--> ( { A }  X.  B )  /\  A. y  e.  B  A. z  e.  B  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
4543, 44sylibr 224 . . 3  |-  ( ph  ->  F : B -1-1-> ( { A }  X.  B ) )
46 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( { A }  X.  B ) )  -> 
z  e.  ( { A }  X.  B
) )
47 elsnxp 5677 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
z  e.  ( { A }  X.  B
)  <->  E. y  e.  B  z  =  <. A , 
y >. ) )
481, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  ( { A }  X.  B )  <->  E. y  e.  B  z  =  <. A ,  y >.
) )
4948adantr 481 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( { A }  X.  B ) )  -> 
( z  e.  ( { A }  X.  B )  <->  E. y  e.  B  z  =  <. A ,  y >.
) )
5046, 49mpbid 222 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( { A }  X.  B ) )  ->  E. y  e.  B  z  =  <. A , 
y >. )
5116adantr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  B )  /\  z  =  <. A ,  y
>. )  ->  ( F `
 y )  = 
<. A ,  y >.
)
52 id 22 . . . . . . . . . . . . 13  |-  ( z  =  <. A ,  y
>.  ->  z  =  <. A ,  y >. )
5352eqcomd 2628 . . . . . . . . . . . 12  |-  ( z  =  <. A ,  y
>.  ->  <. A ,  y
>.  =  z )
5453adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  B )  /\  z  =  <. A ,  y
>. )  ->  <. A , 
y >.  =  z )
5551, 54eqtr2d 2657 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  B )  /\  z  =  <. A ,  y
>. )  ->  z  =  ( F `  y
) )
5655ex 450 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (
z  =  <. A , 
y >.  ->  z  =  ( F `  y ) ) )
5756adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( { A }  X.  B ) )  /\  y  e.  B )  ->  ( z  =  <. A ,  y >.  ->  z  =  ( F `  y ) ) )
5857reximdva 3017 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( { A }  X.  B ) )  -> 
( E. y  e.  B  z  =  <. A ,  y >.  ->  E. y  e.  B  z  =  ( F `  y ) ) )
5950, 58mpd 15 . . . . . 6  |-  ( (
ph  /\  z  e.  ( { A }  X.  B ) )  ->  E. y  e.  B  z  =  ( F `  y ) )
6059ralrimiva 2966 . . . . 5  |-  ( ph  ->  A. z  e.  ( { A }  X.  B ) E. y  e.  B  z  =  ( F `  y ) )
6112, 60jca 554 . . . 4  |-  ( ph  ->  ( F : B --> ( { A }  X.  B )  /\  A. z  e.  ( { A }  X.  B
) E. y  e.  B  z  =  ( F `  y ) ) )
62 dffo3 6374 . . . 4  |-  ( F : B -onto-> ( { A }  X.  B
)  <->  ( F : B
--> ( { A }  X.  B )  /\  A. z  e.  ( { A }  X.  B
) E. y  e.  B  z  =  ( F `  y ) ) )
6361, 62sylibr 224 . . 3  |-  ( ph  ->  F : B -onto-> ( { A }  X.  B
) )
6445, 63jca 554 . 2  |-  ( ph  ->  ( F : B -1-1-> ( { A }  X.  B )  /\  F : B -onto-> ( { A }  X.  B ) ) )
65 df-f1o 5895 . 2  |-  ( F : B -1-1-onto-> ( { A }  X.  B )  <->  ( F : B -1-1-> ( { A }  X.  B )  /\  F : B -onto-> ( { A }  X.  B
) ) )
6664, 65sylibr 224 1  |-  ( ph  ->  F : B -1-1-onto-> ( { A }  X.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   {csn 4177   <.cop 4183    |-> cmpt 4729    X. cxp 5112   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  sge0xp  40646
  Copyright terms: Public domain W3C validator