![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prpssnq | Structured version Visualization version GIF version |
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prpssnq | ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 9810 | . 2 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl3 1066 | . 2 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → 𝐴 ⊊ Q) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∀wal 1481 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊊ wpss 3575 ∅c0 3915 class class class wbr 4653 Qcnq 9674 <Q cltq 9680 Pcnp 9681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-pss 3590 df-np 9803 |
This theorem is referenced by: elprnq 9813 npomex 9818 genpnnp 9827 prlem934 9855 ltexprlem2 9859 reclem2pr 9870 suplem1pr 9874 wuncn 9991 |
Copyright terms: Public domain | W3C validator |