MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnpi Structured version   Visualization version   GIF version

Theorem elnpi 9810
Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnpi (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem elnpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐴P𝐴 ∈ V)
2 simpl1 1064 . 2 (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) → 𝐴 ∈ V)
3 psseq2 3695 . . . . . 6 (𝑧 = 𝐴 → (∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴))
4 psseq1 3694 . . . . . 6 (𝑧 = 𝐴 → (𝑧Q𝐴Q))
53, 4anbi12d 747 . . . . 5 (𝑧 = 𝐴 → ((∅ ⊊ 𝑧𝑧Q) ↔ (∅ ⊊ 𝐴𝐴Q)))
6 eleq2 2690 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
76imbi2d 330 . . . . . . . 8 (𝑧 = 𝐴 → ((𝑦 <Q 𝑥𝑦𝑧) ↔ (𝑦 <Q 𝑥𝑦𝐴)))
87albidv 1849 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ↔ ∀𝑦(𝑦 <Q 𝑥𝑦𝐴)))
9 rexeq 3139 . . . . . . 7 (𝑧 = 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃𝑦𝐴 𝑥 <Q 𝑦))
108, 9anbi12d 747 . . . . . 6 (𝑧 = 𝐴 → ((∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
1110raleqbi1dv 3146 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦) ↔ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
125, 11anbi12d 747 . . . 4 (𝑧 = 𝐴 → (((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦)) ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
13 df-np 9803 . . . 4 P = {𝑧 ∣ ((∅ ⊊ 𝑧𝑧Q) ∧ ∀𝑥𝑧 (∀𝑦(𝑦 <Q 𝑥𝑦𝑧) ∧ ∃𝑦𝑧 𝑥 <Q 𝑦))}
1412, 13elab2g 3353 . . 3 (𝐴 ∈ V → (𝐴P ↔ ((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
15 id 22 . . . . . 6 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q))
16153expib 1268 . . . . 5 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) → (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
17 3simpc 1060 . . . . 5 ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) → (∅ ⊊ 𝐴𝐴Q))
1816, 17impbid1 215 . . . 4 (𝐴 ∈ V → ((∅ ⊊ 𝐴𝐴Q) ↔ (𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q)))
1918anbi1d 741 . . 3 (𝐴 ∈ V → (((∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)) ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
2014, 19bitrd 268 . 2 (𝐴 ∈ V → (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦))))
211, 2, 20pm5.21nii 368 1 (𝐴P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q) ∧ ∀𝑥𝐴 (∀𝑦(𝑦 <Q 𝑥𝑦𝐴) ∧ ∃𝑦𝐴 𝑥 <Q 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wpss 3575  c0 3915   class class class wbr 4653  Qcnq 9674   <Q cltq 9680  Pcnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pss 3590  df-np 9803
This theorem is referenced by:  prn0  9811  prpssnq  9812  prcdnq  9815  prnmax  9817
  Copyright terms: Public domain W3C validator