Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prter2 Structured version   Visualization version   GIF version

Theorem prter2 34166
Description: The quotient set of the equivalence relation generated by a partition equals the partition itself. (Contributed by Rodolfo Medina, 17-Oct-2010.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prter2 (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prter2
Dummy variables 𝑝 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3225 . . . . . . . . . . 11 (∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ))
2 r19.41v 3089 . . . . . . . . . . . 12 (∃𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ) ↔ (∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
32exbii 1774 . . . . . . . . . . 11 (∃𝑧𝑣𝐴 (𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
41, 3bitri 264 . . . . . . . . . 10 (∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
5 df-rex 2918 . . . . . . . . . . 11 (∃𝑧𝑣 𝑝 = [𝑧] ↔ ∃𝑧(𝑧𝑣𝑝 = [𝑧] ))
65rexbii 3041 . . . . . . . . . 10 (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] ↔ ∃𝑣𝐴𝑧(𝑧𝑣𝑝 = [𝑧] ))
7 vex 3203 . . . . . . . . . . . 12 𝑝 ∈ V
87elqs 7799 . . . . . . . . . . 11 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑧 𝐴𝑝 = [𝑧] )
9 df-rex 2918 . . . . . . . . . . . 12 (∃𝑧 𝐴𝑝 = [𝑧] ↔ ∃𝑧(𝑧 𝐴𝑝 = [𝑧] ))
10 eluni2 4440 . . . . . . . . . . . . . 14 (𝑧 𝐴 ↔ ∃𝑣𝐴 𝑧𝑣)
1110anbi1i 731 . . . . . . . . . . . . 13 ((𝑧 𝐴𝑝 = [𝑧] ) ↔ (∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
1211exbii 1774 . . . . . . . . . . . 12 (∃𝑧(𝑧 𝐴𝑝 = [𝑧] ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
139, 12bitri 264 . . . . . . . . . . 11 (∃𝑧 𝐴𝑝 = [𝑧] ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
148, 13bitri 264 . . . . . . . . . 10 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑧(∃𝑣𝐴 𝑧𝑣𝑝 = [𝑧] ))
154, 6, 143bitr4ri 293 . . . . . . . . 9 (𝑝 ∈ ( 𝐴 / ) ↔ ∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] )
16 prtlem18.1 . . . . . . . . . . . 12 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
1716prtlem19 34163 . . . . . . . . . . 11 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
1817ralrimivv 2970 . . . . . . . . . 10 (Prt 𝐴 → ∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] )
19 2r19.29 3079 . . . . . . . . . . 11 ((∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] ∧ ∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] ) → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ))
2019ex 450 . . . . . . . . . 10 (∀𝑣𝐴𝑧𝑣 𝑣 = [𝑧] → (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
2118, 20syl 17 . . . . . . . . 9 (Prt 𝐴 → (∃𝑣𝐴𝑧𝑣 𝑝 = [𝑧] → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
2215, 21syl5bi 232 . . . . . . . 8 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] )))
23 eqtr3 2643 . . . . . . . . . 10 ((𝑣 = [𝑧] 𝑝 = [𝑧] ) → 𝑣 = 𝑝)
2423reximi 3011 . . . . . . . . 9 (∃𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ) → ∃𝑧𝑣 𝑣 = 𝑝)
2524reximi 3011 . . . . . . . 8 (∃𝑣𝐴𝑧𝑣 (𝑣 = [𝑧] 𝑝 = [𝑧] ) → ∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝)
2622, 25syl6 35 . . . . . . 7 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝))
27 df-rex 2918 . . . . . . . . . 10 (∃𝑧𝑣 𝑣 = 𝑝 ↔ ∃𝑧(𝑧𝑣𝑣 = 𝑝))
28 19.41v 1914 . . . . . . . . . 10 (∃𝑧(𝑧𝑣𝑣 = 𝑝) ↔ (∃𝑧 𝑧𝑣𝑣 = 𝑝))
2927, 28bitri 264 . . . . . . . . 9 (∃𝑧𝑣 𝑣 = 𝑝 ↔ (∃𝑧 𝑧𝑣𝑣 = 𝑝))
3029simprbi 480 . . . . . . . 8 (∃𝑧𝑣 𝑣 = 𝑝𝑣 = 𝑝)
3130reximi 3011 . . . . . . 7 (∃𝑣𝐴𝑧𝑣 𝑣 = 𝑝 → ∃𝑣𝐴 𝑣 = 𝑝)
3226, 31syl6 35 . . . . . 6 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → ∃𝑣𝐴 𝑣 = 𝑝))
33 risset 3062 . . . . . 6 (𝑝𝐴 ↔ ∃𝑣𝐴 𝑣 = 𝑝)
3432, 33syl6ibr 242 . . . . 5 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝𝐴))
3516prtlem400 34155 . . . . . 6 ¬ ∅ ∈ ( 𝐴 / )
36 nelelne 2892 . . . . . 6 (¬ ∅ ∈ ( 𝐴 / ) → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ≠ ∅))
3735, 36mp1i 13 . . . . 5 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ≠ ∅))
3834, 37jcad 555 . . . 4 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → (𝑝𝐴𝑝 ≠ ∅)))
39 eldifsn 4317 . . . 4 (𝑝 ∈ (𝐴 ∖ {∅}) ↔ (𝑝𝐴𝑝 ≠ ∅))
4038, 39syl6ibr 242 . . 3 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) → 𝑝 ∈ (𝐴 ∖ {∅})))
41 neldifsn 4321 . . . . . . 7 ¬ ∅ ∈ (𝐴 ∖ {∅})
42 n0el 3940 . . . . . . 7 (¬ ∅ ∈ (𝐴 ∖ {∅}) ↔ ∀𝑝 ∈ (𝐴 ∖ {∅})∃𝑧 𝑧𝑝)
4341, 42mpbi 220 . . . . . 6 𝑝 ∈ (𝐴 ∖ {∅})∃𝑧 𝑧𝑝
4443rspec 2931 . . . . 5 (𝑝 ∈ (𝐴 ∖ {∅}) → ∃𝑧 𝑧𝑝)
45 eldifi 3732 . . . . 5 (𝑝 ∈ (𝐴 ∖ {∅}) → 𝑝𝐴)
4644, 45jca 554 . . . 4 (𝑝 ∈ (𝐴 ∖ {∅}) → (∃𝑧 𝑧𝑝𝑝𝐴))
4716prtlem19 34163 . . . . . . . . 9 (Prt 𝐴 → ((𝑝𝐴𝑧𝑝) → 𝑝 = [𝑧] ))
4847ancomsd 470 . . . . . . . 8 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → 𝑝 = [𝑧] ))
49 elunii 4441 . . . . . . . 8 ((𝑧𝑝𝑝𝐴) → 𝑧 𝐴)
5048, 49jca2r 34139 . . . . . . 7 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → (𝑧 𝐴𝑝 = [𝑧] )))
51 prtlem11 34151 . . . . . . . . 9 (𝑝 ∈ V → (𝑧 𝐴 → (𝑝 = [𝑧] 𝑝 ∈ ( 𝐴 / ))))
527, 51ax-mp 5 . . . . . . . 8 (𝑧 𝐴 → (𝑝 = [𝑧] 𝑝 ∈ ( 𝐴 / )))
5352imp 445 . . . . . . 7 ((𝑧 𝐴𝑝 = [𝑧] ) → 𝑝 ∈ ( 𝐴 / ))
5450, 53syl6 35 . . . . . 6 (Prt 𝐴 → ((𝑧𝑝𝑝𝐴) → 𝑝 ∈ ( 𝐴 / )))
5554eximdv 1846 . . . . 5 (Prt 𝐴 → (∃𝑧(𝑧𝑝𝑝𝐴) → ∃𝑧 𝑝 ∈ ( 𝐴 / )))
56 19.41v 1914 . . . . 5 (∃𝑧(𝑧𝑝𝑝𝐴) ↔ (∃𝑧 𝑧𝑝𝑝𝐴))
57 19.9v 1896 . . . . 5 (∃𝑧 𝑝 ∈ ( 𝐴 / ) ↔ 𝑝 ∈ ( 𝐴 / ))
5855, 56, 573imtr3g 284 . . . 4 (Prt 𝐴 → ((∃𝑧 𝑧𝑝𝑝𝐴) → 𝑝 ∈ ( 𝐴 / )))
5946, 58syl5 34 . . 3 (Prt 𝐴 → (𝑝 ∈ (𝐴 ∖ {∅}) → 𝑝 ∈ ( 𝐴 / )))
6040, 59impbid 202 . 2 (Prt 𝐴 → (𝑝 ∈ ( 𝐴 / ) ↔ 𝑝 ∈ (𝐴 ∖ {∅})))
6160eqrdv 2620 1 (Prt 𝐴 → ( 𝐴 / ) = (𝐴 ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  c0 3915  {csn 4177   cuni 4436  {copab 4712  [cec 7740   / cqs 7741  Prt wprt 34156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744  df-qs 7748  df-prt 34157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator